(本小題滿分14分)
(Ⅰ) 已知動點(diǎn)到點(diǎn)與到直線的距離相等,求點(diǎn)的軌跡的方程;
(Ⅱ) 若正方形的三個頂點(diǎn),,()在(Ⅰ)中的曲線上,設(shè)的斜率為,,求關(guān)于的函數(shù)解析式;
(Ⅲ) 求(2)中正方形面積的最小值。
(Ⅰ)動點(diǎn)的軌跡方程為
(Ⅱ)
(Ⅲ),即的最小值為,當(dāng)且僅當(dāng)時取得最小值.
解:(Ⅰ) 由題設(shè)可得動點(diǎn)的軌跡方程為.       ………………4分
(Ⅱ)由(1),可設(shè)直線的方程為:,………5分
得,
易知、為該方程的兩個根,故有,得
從而得,  ……………………6分
類似地,可設(shè)直線的方程為:,………………7分
從而得,                ……………………8分
,得,解得,                                         
.     ……………………10分
(Ⅲ)因為,……………12分
所以,即的最小值為,當(dāng)且僅當(dāng)時取得最小值.……14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
已知點(diǎn)A(2,0),. P為上的動點(diǎn),線段BP上的點(diǎn)M滿足|MP|=|MA|.
  (Ⅰ)求點(diǎn)M的軌跡C的方程;
 。á颍┻^點(diǎn)B(-2,0)的直線與軌跡C交于S、T兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如右圖所示,“嫦娥一號”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月
球附近一點(diǎn)P變軌進(jìn)入以月球球心F為一個焦點(diǎn)的橢圓軌道Ⅰ繞月飛
行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個焦點(diǎn)的橢圓軌道Ⅱ
繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道Ⅲ
繞月飛行,若用分別表示橢軌道Ⅰ和Ⅱ的焦距,用
分別表示橢圓軌道Ⅰ和Ⅱ的長軸的長,給出下列式子:
、 ③    ④.
其中正確式子的序號是 (    )
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知與曲線、y軸于
為原點(diǎn)。
(1)求證:
(2)求線段AB中點(diǎn)的軌跡方程;
(3)求△AOB面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是圓上滿足條件的兩個點(diǎn),其中O是坐標(biāo)原點(diǎn),分別過A、B作軸的垂線段,交橢圓點(diǎn),動點(diǎn)P滿足.(1)求動點(diǎn)P的軌跡方程;(2)設(shè)分別表示的面積,當(dāng)點(diǎn)P在軸的上方,點(diǎn)A在軸的下方時,求+的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
如圖,已知拋物線的焦點(diǎn)為,是拋物線上橫坐標(biāo)為8且位于軸上方的點(diǎn). 到拋物線準(zhǔn)線的距離等于10,過垂直于軸,垂足為,的中點(diǎn)為為坐標(biāo)原點(diǎn)).
(Ⅰ)求拋物線的方程;
(Ⅱ)過,垂足為,求點(diǎn)的坐標(biāo);
(Ⅲ)以為圓心,4為半徑作圓,點(diǎn)軸上的一個動點(diǎn),試討論直線與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)已知點(diǎn),直線,為平面上的動點(diǎn),過點(diǎn)作直線的垂線,垂足為,且
(1)求動點(diǎn)的軌跡的方程;
(2)已知圓過定點(diǎn),圓心在軌跡上運(yùn)動,且圓軸交于、兩點(diǎn),設(shè),,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線關(guān)于直線對稱的曲線方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知曲線C:,點(diǎn)及點(diǎn),從A點(diǎn)觀察點(diǎn)B,要使視線不被曲線C擋住,則實數(shù)a的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案