數(shù)列{an}的通項公式an=
1
n
+
n+1
,則Sn=
n+1
-1
n+1
-1
分析:由數(shù)列{an}的通項公式an=
1
n
+
n+1
=
n+1
-
n
,利用裂項求和法能求出Sn
解答:解:∵數(shù)列{an}的通項公式an=
1
n
+
n+1
=
n+1
-
n
,
∴Sn=a1+a2+…+an
=(
2
-1
)+(
3
-
2
)+…+(
n+1
-
n

=
n+1
-1

故答案為:
n+1
-1
點評:本題考查數(shù)列的前n項和的求法,是基礎題.解題時要認真審題,注意裂項求和法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和Sn=2n2+n-1,則數(shù)列{an}的通項公為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項和,且滿足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求數(shù)列{an}的通項公an
(2)若記bn=(2n+1)•(
1Sn
+2)
,Tn為數(shù)列{bn}的前n項和,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項和,且滿足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求數(shù)列{an}的通項公an
(2)若記數(shù)學公式,Tn為數(shù)列{bn}的前n項和,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

數(shù)列{an}的前n項和Sn=2n2+n-1,則數(shù)列{an}的通項公為______.

查看答案和解析>>

科目:高中數(shù)學 來源:2002-2003學年北京市朝陽區(qū)高一(上)期末數(shù)學試卷(解析版) 題型:填空題

數(shù)列{an}的前n項和Sn=2n2+n-1,則數(shù)列{an}的通項公為   

查看答案和解析>>

同步練習冊答案