【題目】如圖,四邊形,,,現(xiàn)將沿折起,當(dāng)二面角的大小在時(shí),直線和所成角為,則的最大值為( )
A. B. C. D.
【答案】C
【解析】
取BD中點(diǎn)O,連結(jié)AO,CO,以O為原點(diǎn),OC為x軸,OD為y軸,過(guò)點(diǎn)O作平面BCD的垂線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線AB與CD所成角的余弦值取值范圍.
解:取BD中點(diǎn)O,連結(jié)AO,CO,
∵AB=BD=DA=4.BC=CD,∴CO⊥BD,AO⊥BD,且CO=2,AO,
∴∠AOC是二面角A﹣BD﹣C的平面角,
以O為原點(diǎn),OC為x軸,OD為y軸,
過(guò)點(diǎn)O作平面BCD的垂線為z軸,建立空間直角坐標(biāo)系,
B(0,﹣2,0),C(2,0,0),D(0,2,0),
設(shè)二面角A﹣BD﹣C的平面角為θ,則,
連AO、BO,則∠AOC=θ,A(),
∴,,
設(shè)AB、CD的夾角為α,
則cosα,
∵,∴cos,∴|1|∈[0,1+].
∴cos的最大值為.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從二月一日起的300天內(nèi),西紅柿市場(chǎng)銷(xiāo)售價(jià)與上市時(shí)間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系用圖(2)的拋物線段表示.
(1)寫(xiě)出圖(1)表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系式寫(xiě)出圖(2)表示的種植成本與時(shí)間的函數(shù)關(guān)系式
(2)認(rèn)定市場(chǎng)售價(jià)減去種植成本為純收益,問(wèn)何時(shí)上市的西紅柿收益最大?(注:市場(chǎng)售價(jià)和種植成本的單位:元/kg,時(shí)間單位:天.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在長(zhǎng)方形中,為的中點(diǎn),為線段上一動(dòng)點(diǎn).現(xiàn)將沿折起,形成四棱錐.
(1)若與重合,且(如圖2).證明:平面;
(2)若不與重合,且平面平面 (如圖3),設(shè),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=,.
(1)求證:CF⊥平面BDE;
(2)求二面角A-BE-D的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列四個(gè)命題:
①“相似三角形周長(zhǎng)相等”的否命題;
②“若,則”的逆命題;
③“若,則”的否命題;
④“若,則方程有實(shí)根”的逆否命題;
其中真命題的個(gè)數(shù)是( )
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),,函數(shù).
(Ⅰ)設(shè)不等式的解集為C,當(dāng)時(shí),求實(shí)數(shù)取值范圍;
(Ⅱ)若對(duì)任意,都有成立,試求時(shí),的值域;
(Ⅲ)設(shè),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】質(zhì)量監(jiān)督局檢測(cè)某種產(chǎn)品的三個(gè)質(zhì)量指標(biāo),用綜合指標(biāo)核定該產(chǎn)品的等級(jí).若,則核定該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:
(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;
(2)在該樣品的一等品中,隨機(jī)抽取2件產(chǎn)品,設(shè)事件為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)均滿足”,求事件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為實(shí)數(shù),函數(shù).
(1)當(dāng)時(shí),求在區(qū)間上的最大值;
(2)設(shè)函數(shù)為在區(qū)間上的最大值,求的解析式;
(3)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一微商店對(duì)某種產(chǎn)品每天的銷(xiāo)售量(件)進(jìn)行為期一個(gè)月的數(shù)據(jù)統(tǒng)計(jì)分析,并得出了該月銷(xiāo)售量的直方圖(一個(gè)月按30天計(jì)算)如圖所示.假設(shè)用直方圖中所得的頻率來(lái)估計(jì)相應(yīng)事件發(fā)生的概率.
(1)求頻率分布直方圖中的值;
(2)求日銷(xiāo)量的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)若微商在一天的銷(xiāo)售量超過(guò)25件(包括25件),則上級(jí)商企會(huì)給微商贈(zèng)送100元的禮金,估計(jì)該微商在一年內(nèi)獲得的禮金數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com