【題目】有下列四個(gè)命題:

①“相似三角形周長(zhǎng)相等”的否命題;

②“若,則”的逆命題;

③“若,則”的否命題;

④“若,則方程有實(shí)根”的逆否命題;

其中真命題的個(gè)數(shù)是( )

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

【答案】C

【解析】

寫出命題的逆命題可判斷;寫出逆命題,可判斷;寫出命題的否命題,可判斷;由判別式法可判斷原命題的真假,進(jìn)而判斷

解:“相似三角形周長(zhǎng)相等”的逆命題為“周長(zhǎng)相等的三角形相似”不正確,根據(jù)逆否命題同真同假,可得其否命題不正確;

“若xy,則x|y|”的逆命題為“若x|y|,則xy”正確;

“若x1,則x2+x20”的否命題為“若x1,則x2+x20”不正確;

“若b0,則方程x22bx+b2+b0有實(shí)根”由△=4b24b2+b)=﹣4b0,可得原命題正確,其逆否命題也正確.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)業(yè)合作社生產(chǎn)了一種綠色蔬菜共噸,如果在市場(chǎng)上直接銷售,每噸可獲利萬(wàn)元;如果進(jìn)行精加工后銷售,每噸可獲利萬(wàn)元,但需另外支付一定的加工費(fèi),總的加工(萬(wàn)元)與精加工的蔬菜量(噸)有如下關(guān)系:設(shè)該農(nóng)業(yè)合作社將(噸)蔬菜進(jìn)行精加工后銷售,其余在市場(chǎng)上直接銷售,所得總利潤(rùn)(扣除加工費(fèi))為(萬(wàn)元).

(1)寫出關(guān)于的函數(shù)表達(dá)式;

(2)當(dāng)精加工蔬菜多少噸時(shí),總利潤(rùn)最大,并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)和直線,為曲線上一點(diǎn),為點(diǎn)到直線的距離且滿足.

(1)求曲線的軌跡方程;

(2)過點(diǎn)作曲線的兩條動(dòng)弦,若直線斜率之積為,試問直線是否一定經(jīng)過一定點(diǎn)?若經(jīng)過,求出該定點(diǎn)坐標(biāo);若不經(jīng)過,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),

1)求的函數(shù)解析式;

2)作出的草圖,并求出當(dāng)函數(shù)個(gè)不同零點(diǎn)時(shí),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,PA⊥底面ABC,∠BAC=90°.點(diǎn)D,EN分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PAAC=4,AB=2.

(1)求證:MN∥平面BDE

(2)求二面角CEMN的正弦值;

(3)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形,,,現(xiàn)將沿折起,當(dāng)二面角的大小在時(shí),直線所成角為,則的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的值為4,則判斷框中應(yīng)填入的條件是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知上的偶函數(shù),當(dāng)時(shí),.對(duì)于結(jié)論

1)當(dāng)時(shí),

2)函數(shù)的零點(diǎn)個(gè)數(shù)可以為;

3)若函數(shù)在區(qū)間上恒為正,則實(shí)數(shù)的范圍是

以上說法正確的序號(hào)是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三統(tǒng)考結(jié)束后,分別從喜歡數(shù)學(xué)和不喜歡數(shù)學(xué)的學(xué)生中各隨機(jī)抽取了10人的成績(jī),分?jǐn)?shù)都是整數(shù),得到如下莖葉圖,但是喜歡數(shù)學(xué)和不喜歡數(shù)學(xué)的各缺失了一個(gè)數(shù)據(jù).若已知不喜歡數(shù)學(xué)的10人成績(jī)的中位數(shù)為75,且已知喜歡數(shù)學(xué)的10人中所缺失成績(jī)是85分以上,但是不高于喜歡數(shù)學(xué)的10人的平均分.不喜歡數(shù)學(xué)和喜歡數(shù)學(xué)缺失的數(shù)據(jù)分別是________

查看答案和解析>>

同步練習(xí)冊(cè)答案