【題目】若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點(diǎn).已知a,b是實(shí)數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個極值點(diǎn).
(1)求a和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+2,求g(x)的極值點(diǎn).
【答案】(1)a=0,b=-3.
(2)-2.
【解析】(1)由題設(shè)得f′(x)=3x2+2ax+b,
所以,
解之得a=0,b=-3.
(2)由(1)知f(x)=x3-3x.
因?yàn)閒(x)+2=(x-1)2(x+2),
所以g′(x)=0的根為x1=x2=1,x3=-2,
于是函數(shù)g(x)的極值點(diǎn)只可能是1或-2.
當(dāng)x<-2時,g′(x)<0;當(dāng)-2<x<1時,
g′(x)>0,故-2是g(x)的極值點(diǎn).
當(dāng)-2<x<1或x>1時,g′(x)>0,
故1不是g(x)的極值點(diǎn).
所以g(x)的極值點(diǎn)為-2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若無窮數(shù)列{an}滿足:只要ap=aq(p,q∈N*),必有ap+1=aq+1 , 則稱{an}具有性質(zhì)P.
(1)若{an}具有性質(zhì)P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;
(2)若無窮數(shù)列{bn}是等差數(shù)列,無窮數(shù)列{cn}是公比為正數(shù)的等比數(shù)列,b1=c5=1;b5=c1=81,an=bn+cn , 判斷{an}是否具有性質(zhì)P,并說明理由;
(3)設(shè){bn}是無窮數(shù)列,已知an+1=bn+sinan(n∈N*),求證:“對任意a1 , {an}都具有性質(zhì)P”的充要條件為“{bn}是常數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過直線x﹣y﹣1=0與直線2x+y﹣5=0的交點(diǎn)P.
(1)若l與直線x+3y﹣1=0垂直,求l的方程;
(2)點(diǎn)A(﹣1,3)和點(diǎn)B(3,1)到直線l的距離相等,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四面體VABC木塊中,P為△VAC的重心,這點(diǎn)P作截面EFGH,若截面EFGH是平行四邊形,則該截面把木塊分成兩部分體積之比為____________. (填體積小與體積大之比)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)P是平行四邊形ABCD所在平面外一點(diǎn),M、N分別是AB、PC的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)在PB上確定一個點(diǎn)Q,使平面MNQ∥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,2012年春節(jié),攝影愛好者在某公園處,發(fā)現(xiàn)正前方處有一立柱,測得立柱頂端的仰角和立柱底部的俯角均為,設(shè)的眼睛距地面的距離米.
(1)求攝影者到立柱的水平距離和立柱的高度;
(2)立柱的頂端有一長2米的彩桿繞其中點(diǎn)在與立柱所在的平面內(nèi)旋轉(zhuǎn).?dāng)z影者有一視角范圍為的鏡頭,在彩桿轉(zhuǎn)動的任意時刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,為坐標(biāo)原點(diǎn),動點(diǎn)在圓外,過點(diǎn)作圓的切線,設(shè)切點(diǎn)為.
(1)若點(diǎn)運(yùn)動到處,求此時切線的方程;
(2)求滿足的點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果數(shù)列a1 , a2 , a3 , … , an , …是等差數(shù)列,那么下列數(shù)列中不是等差數(shù)列的是:( )
A.a1+x , a2+x , a3+x , …,an+x ,
B.ka1 , ka2 , ka3 , …,kan ,
C.
D.a1 , a4 , a7 , …a3n﹣2 ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={x|3+2x﹣x2>0},N={x|x>a},若MN,則實(shí)數(shù)a的取值范圍是( )
A.[3,+∞)
B.(3,+∞)
C.(﹣∞,﹣1]
D.(﹣∞,﹣1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com