【題目】已知集合M={x|3+2xx2>0},N={x|x>a},若MN,則實數(shù)a的取值范圍是(
A.[3,+∞)
B.(3,+∞)
C.(﹣∞,﹣1]
D.(﹣∞,﹣1)

【答案】C
【解析】解答:M={x|3+2xx2>0}={x|x2﹣2x﹣3<0}=(﹣1,3), 因為MN
所以a≤﹣1
故選C

分析:集合M為一個二次不等式的解集,先解出,再由MN利用數(shù)軸求解.
【考點精析】解答此題的關鍵在于理解解一元二次不等式的相關知識,掌握求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點.已知a,b是實數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個極值點.

(1)求a和b的值;

(2)設函數(shù)g(x)的導函數(shù)g′(x)=f(x)+2,求g(x)的極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某海輪以30海里/小時的速度航行,在A點測得海面上油井P在南偏東60°,向北航行40分鐘后到達B點,測得油井P在南偏東30°,海輪改為北偏東60°的航向再行駛80分鐘到達C點,求P、C間的距離( )海里.
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Ω是一個與x軸的正半軸、y軸的正半軸分別相切于點C、D的定圓所圍成區(qū)域(含邊界),A、B、C、D是該圓的四等分點,若點P(x,y)、P′(x′,y′)滿足x≤x′且y≥y′,則稱P優(yōu)于P′,如果Ω中的點Q滿足:不存在Ω中的其它點優(yōu)于Q,那么所有這樣的點Q組成的集合是劣。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱中,DBC的中點.

(Ⅰ)證明平面;

(Ⅱ)若,求直線AB與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,若是線段上的動點,則下列結論不正確的是( )

A. 三棱錐的正視圖面積是定值

B. 異面直線所成的角可為

C. 三棱錐的體積大小與點在線段的位置有關

D. 直線與平面所成的角可為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,已知角A,B,C所對的邊分別為a,b,c,且tanB=2,tanC=3.
(1)求角A的大;
(2)若c=3,求b的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列{an}滿足:a1=1,an+1=ran+r(n∈N* , 實數(shù)r是非零常數(shù)),則“r=1”是“數(shù)列{an}是等差數(shù)列”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線與坐標軸的交點都在圓上.

(1)求圓的方程;

(2)若圓與直線交于兩點,且,求的值.

查看答案和解析>>

同步練習冊答案