【題目】如圖,平面四邊形中,,,,,將三角形沿翻折到三角形的位置,平面平面,為中點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求直線與平面所成角的正弦值.
【答案】(Ⅰ)詳見解析(Ⅱ)
【解析】
(Ⅰ)由題意為等邊三角形,可以證明及,由平面平面,可知平面,從而,進(jìn)而可以得到平面,即可證明;(Ⅱ)以為坐標(biāo)原點(diǎn),分別為軸,軸建立空間直角坐標(biāo)系,分別求出和平面的法向量,由可以得到答案。
(Ⅰ)由題意為等邊三角形,則,
在三角形中,,,由余弦定理可求得,
,即
又平面平面,平面平面,平面
平面
等邊三角形中,為中點(diǎn),則,且
平面,
(Ⅱ)以為坐標(biāo)原點(diǎn),分別為軸,軸建立空間直角坐標(biāo)系,
則,,,,
,
設(shè)是平面的法向量,則,
取
所以直線與平面所成角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在創(chuàng)建“全國文明衛(wèi)生城”過程中,某市“創(chuàng)城辦”為了調(diào)查市民對創(chuàng)城工作的了解情況,進(jìn)行了一次創(chuàng)城知識問卷調(diào)查(一位市民只能參加一次).通過隨機(jī)抽樣,得到參加問卷調(diào)查的100人的得分統(tǒng)計結(jié)果如表所示:
組別 | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 2 | 15 | 20 | 25 | 24 | 10 | 4 |
(I)由頻數(shù)分布表可以大致認(rèn)為,此次問卷調(diào)查的得分Z服從正態(tài)分布N(μ,198),μ近似為這100人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求P(37<Z≤79);
(II)在(I)的條件下,“創(chuàng)城辦”為此次參加問卷調(diào)查的市民制定如下獎勵方案:
①得分不低于μ的可以獲贈2次隨機(jī)話費(fèi),得分低于μ的可以獲贈1次隨機(jī)話費(fèi);
②每次獲贈的隨機(jī)話費(fèi)和對應(yīng)的概率為:
贈送話費(fèi)的金額(單元:元) | 20 | 40 |
概率 |
|
|
現(xiàn)有市民甲參加此次問卷調(diào)查,記ξ(單位:元)為該市民參加問卷調(diào)查獲贈的話費(fèi),求ξ的分布列與數(shù)學(xué)期望.附:參考數(shù)據(jù)與公式:14.
若X~N(μ,σ2),則P(μ﹣σ<X≤μ+σ)=0.6826;P(μ2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商銷售進(jìn)價為每箱40元的蘋果,假設(shè)每箱售價不低于50元且不得高于55元,市場調(diào)查發(fā)現(xiàn),若每箱以50元的價格銷售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.
(1)求平均每天的銷售量y(箱)與銷售單價x(元/箱)之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售單價x(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋果的售價為多少元時,每天可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , , , 與均為等邊三角形,點(diǎn)為的中點(diǎn).
(1)證明:平面平面;
(2)若點(diǎn)在線段上且,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC在內(nèi)角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)設(shè)是的極值點(diǎn),求的值;
(Ⅱ)在(Ⅰ)的條件下,在定義域內(nèi)恒成立,求的取值范圍;
(Ⅲ)當(dāng)時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在等腰梯形中,,,分別為,的中點(diǎn),,為中點(diǎn)現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體在圖②中,
(1)證明:;
(2)求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),若以直角坐標(biāo)系中的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(為實(shí)數(shù).)
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線與曲線有公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),直線與坐標(biāo)軸的交點(diǎn)是橢圓的兩個頂點(diǎn).
(1)求橢圓的方程;
(2)若是橢圓上的兩點(diǎn),且滿足,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com