【題目】某水果批發(fā)商銷售進價為每箱40元的蘋果,假設(shè)每箱售價不低于50元且不得高于55元,市場調(diào)查發(fā)現(xiàn),若每箱以50元的價格銷售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.
(1)求平均每天的銷售量y(箱)與銷售單價x(元/箱)之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售單價x(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋果的售價為多少元時,每天可以獲得最大利潤?最大利潤是多少?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=ex+asinx,x∈(-π,+∞),下列說法正確的是( )
A.當(dāng)a=1時,f(x)在(0,f(0))處的切線方程為2x-y+1=0
B.當(dāng)a=1時,f(x)存在唯一極小值點x0且-1<f(x0)<0
C.對任意a>0,f(x)在(-π,+∞)上均存在零點
D.存在a<0,f(x)在(-π,+∞)上有且只有一個零點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖是某校高三(1)班的一次數(shù)學(xué)知識競賽成績的莖葉圖(圖中僅列出,的數(shù)據(jù))和頻率分布直方圖.
(1)求分數(shù)在的頻率及全班人數(shù);
(2)求頻率分布直方圖中的;
(3)若要從分數(shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分數(shù)在之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機對學(xué)習(xí)的影響.部分統(tǒng)計數(shù)據(jù)如下表:
使用智能手機 | 不使用智能手機 | 合計 | |
學(xué)習(xí)成績優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績不優(yōu)秀 | 16 | 2 | 18 |
合計 | 20 | 10 | 30 |
經(jīng)計算,則下列選項正確的是( )
0.50 | 0.25 | 0.1 | 0.050 | 0.010 | 0.005 | 0.001 | |
0.455 | 1.323 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
A.有99.5%的把握認為使用智能手機對學(xué)習(xí)有影響
B.有99.5%的把握認為使用智能手機對學(xué)習(xí)無影響
C.有99.9%的把握認為使用智能手機對學(xué)習(xí)有影響
D.有99.9%的把握認為使用智能手機對學(xué)習(xí)無影響
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在A,B實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優(yōu)質(zhì)花苗.
(1)求圖中a的值;
(2)用樣本估計總體,以頻率作為概率,若在A,B兩塊試驗地隨機抽取3棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z滿足|z|= 的虛部為2,z所對應(yīng)的點在第一象限,
(1)求z;
(2)若z,z2,z-z2在復(fù)平面上對應(yīng)的點分別為A,B,C,求cos∠ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名射手互不影響地進行射擊訓(xùn)練,根據(jù)以往的數(shù)據(jù)統(tǒng)計,他們射擊成績的分布列如下表所示.
射手甲 | 射手乙 | ||||||
環(huán)數(shù) | 環(huán)數(shù) | ||||||
概率 | 概率 |
(1)若甲射手共有發(fā)子彈,一旦命中環(huán)就停止射擊,求他剩余發(fā)子彈的概率;
(2)若甲、乙兩名射手各射擊次,求次射擊中恰有次命中環(huán)的概率;
(3)若甲、乙兩名射手各射擊次,記所得的環(huán)數(shù)之和為,求的概率分布.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面四邊形中,,,,,將三角形沿翻折到三角形的位置,平面平面,為中點.
(Ⅰ)求證:;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為 為參數(shù)),以原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線,的公共點為.
(Ⅰ)求直線的斜率;
(Ⅱ)若點分別為曲線,上的動點,當(dāng)取最大值時,求四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com