【題目】已知橢圓的離心率為,點,分別為橢圓的左右頂點,點上,且面積的最大值為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)的左焦點,點在直線上,過的垂線交橢圓,兩點.證明:直線平分線段.

【答案】(Ⅰ);(Ⅱ)證明見解析.

【解析】分析:(1)由題意可知,,結(jié)合,即可求得橢圓方程.

(2)由題意設(shè),,線段的中點.,易知平分線段,,因點,在橢圓上,根據(jù)點差法整理得,所以,直線平分線段.

詳解:解:(Ⅰ)由橢圓的性質(zhì)知當(dāng)點位于短軸頂點時面積最大.

∴有,解得

故橢圓的方程為.

(Ⅱ)證明:設(shè),,,線段的中點.

,,

由()可得,則直線的斜率為.

當(dāng)時,直線的斜率不存在,由橢圓性質(zhì)易知平分線段,

當(dāng)時,直線的斜率.

∵點,在橢圓上,,

整理得:

,

,直線的斜率為

∵直線的斜率為,

∴直線平分線段.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知真命題:“函數(shù)y=f(x)的圖象關(guān)于點P(a,b)成中心對稱圖形”的充要條件為“函數(shù)y=f(x+a)﹣b 是奇函數(shù)”.
(1)將函數(shù)g(x)=x3﹣3x2的圖象向左平移1個單位,再向上平移2個單位,求此時圖象對應(yīng)的函數(shù)解析式,并利用題設(shè)中的真命題求函數(shù)g(x)圖象對稱中心的坐標(biāo);
(2)求函數(shù)h(x)= 圖象對稱中心的坐標(biāo);
(3)已知命題:“函數(shù) y=f(x)的圖象關(guān)于某直線成軸對稱圖象”的充要條件為“存在實數(shù)a和b,使得函數(shù)y=f(x+a)﹣b 是偶函數(shù)”.判斷該命題的真假.如果是真命題,請給予證明;如果是假命題,請說明理由,并類比題設(shè)的真命題對它進(jìn)行修改,使之成為真命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校為調(diào)查學(xué)生喜歡“應(yīng)用統(tǒng)計”課程是否與性別有關(guān),隨機抽取了選修課程的60名學(xué)生,得到數(shù)據(jù)如下表:

喜歡統(tǒng)計課程

不喜歡統(tǒng)計課程

合計

男生

20

10

30

女生

10

20

30

合計

30

30

60

(1)判斷是否有99.5%的把握認(rèn)為喜歡“應(yīng)用統(tǒng)計”課程與性別有關(guān)?

(2)用分層抽樣的方法從喜歡統(tǒng)計課程的學(xué)生中抽取6名學(xué)生作進(jìn)一步調(diào)查,將這6名學(xué)生作為一個樣本,從中任選3人,求恰有2個男生和1個女生的概率.

下面的臨界值表供參考:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線

1)若直線不經(jīng)過第四象限,求的取值范圍;

2)若直線軸負(fù)半軸于點,交軸正半軸于點為坐標(biāo)原點,設(shè)的面積為,求的最小值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于公差d>0的等差數(shù)列{an}的四個命題:
p1:數(shù)列{an}是遞增數(shù)列;
p2:數(shù)列{nan}是遞增數(shù)列;
p3:數(shù)列 是遞增數(shù)列;
p4:數(shù)列{an+3nd}是遞增數(shù)列;
其中真命題是(
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C+=1ab0)的離心率為,短軸一個端點到右焦點的距離為3

1)求橢圓C的方程;

2)橢圓C上是否存在點P,使得過點P引圓Ox2+y2=b2的兩條切線PA、PB互相垂直?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF、BF,若|AB|=10,|AF|=6,cos∠ABF= ,則C的離心率e=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為拋物線的焦點,為其標(biāo)準(zhǔn)線與軸的交點,過的直線交拋物線,兩點,為線段的中點,且,則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)為了解居民喜歡中華傳統(tǒng)文化是否與年齡有關(guān),隨機調(diào)查了60位居民,相關(guān)數(shù)據(jù)統(tǒng)計如下表所示,

喜歡

不喜歡

合計

大于45歲

26

6

32

25歲至45歲

13

15

28

合計

39

21

60

(Ⅰ)是否有99.5%以上的人把握認(rèn)為喜歡中華傳統(tǒng)文化與年齡有關(guān)?

(Ⅱ)按年齡采用分層抽樣的方法從喜歡中華傳統(tǒng)文化的受調(diào)查居民中隨機抽取6人作進(jìn)一步了解,若從這6位居民中任選2人,求這2人的年齡均大于45歲的概率.

附:

0.025

0.010

0.005

0,001

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案