【題目】已知橢圓 的左焦點(diǎn)為F,C與過原點(diǎn)的直線相交于A,B兩點(diǎn),連接AF、BF,若|AB|=10,|AF|=6,cos∠ABF= ,則C的離心率e=

【答案】
【解析】解:設(shè)橢圓的右焦點(diǎn)為F',連接AF'、BF'
∵AB與FF'互相平分,∴四邊形AFBF'為平行四邊形,可得|AF|=|BF'|=6
∵△ABF中,|AB|=10,|AF|=6,cos∠ABF=
∴由余弦定理|AF|2=|AB|2+|BF|2﹣2|AB|×|BF|cos∠ABF,
可得62=102+|BF|2﹣2×10×|BF|× ,解之得|BF|=8
由此可得,2a=|BF|+|BF'|=14,得a=7
∵△ABF中,|AF|2+|BF|2=100=|AB|2
∴∠AFB=90°,可得|OF|= |AB|=5,即c=5
因此,橢圓C的離心率e= =
所以答案是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中錯誤的是( )

A. 若兩個平面平行,則分別位于這兩個平面的直線也互相平行

B. 平行于同一個平面的兩個平面平行;

C. 平面內(nèi)一個三角形各邊所在的直線都與另一個平面平行,則這兩個平面平行

D. 若兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S4=4S2 , a2n=2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn (λ為常數(shù)).令cn=b2n(n∈N*)求數(shù)列{cn}的前n項(xiàng)和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn),分別為橢圓的左右頂點(diǎn),點(diǎn)上,且面積的最大值為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)的左焦點(diǎn),點(diǎn)在直線上,過的垂線交橢圓兩點(diǎn).證明:直線平分線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)O(0,0),A(0,b),B(a,a3),若△OAB為直角三角形,則必有( )
A.b=a3
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量 , ,
(1)若 ,求x的值;
(2)設(shè)函數(shù) ,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)函數(shù)有四個不同的零點(diǎn),從小到大依次為,,,的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了更好地規(guī)劃進(jìn)貨的數(shù)量,保證蔬菜的新鮮程度,某蔬菜商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了8組數(shù)據(jù)作為研究對象,如表所示((噸)為買進(jìn)蔬菜的數(shù)量,(天)為銷售天數(shù)):

2

3

4

5

6

7

9

12

1

2

3

3

4

5

6

8

(1)根據(jù)上表數(shù)據(jù)在所給坐標(biāo)系中繪制散點(diǎn)圖,并用最小二乘法求出關(guān)于的線性回歸方程

(2)根據(jù)(Ⅰ)中的計算結(jié)果,該蔬菜商店準(zhǔn)備一次性買進(jìn)25噸,預(yù)計需要銷售多少天?

(參考數(shù)據(jù)和公式:,,, ,.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求的直角坐標(biāo)方程;

2)若有且僅有三個公共點(diǎn),求的方程.

查看答案和解析>>

同步練習(xí)冊答案