【題目】如圖,四邊形ABCD為正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于點(diǎn)F,F(xiàn)E∥CD,交PD于點(diǎn)E.

(1)證明:CF⊥平面ADF;
(2)求二面角D﹣AF﹣E的余弦值.

【答案】
(1)解:∵PD⊥平面ABCD,∴PD⊥AD,

又CD⊥AD,PD∩CD=D,∴AD⊥平面PCD,

∴AD⊥PC,又AF⊥PC,

∴PC⊥平面ADF,即CF⊥平面ADF


(2)解:設(shè)AB=1,在RT△PDC中,CD=1,∠DPC=30°,

∴PC=2,PD= ,由(1)知CF⊥DF,

∴DF= ,AF= = ,

∴CF= = ,又FE∥CD,

,∴DE= ,同理可得EF= CD= ,

如圖所示,以D為原點(diǎn),建立空間直角坐標(biāo)系,

則A(0,0,1),E( ,0,0),F(xiàn)( , ,0),P( ,0,0),C(0,1,0)

設(shè)向量 =(x,y,z)為平面AEF的法向量,則有 , ,

,令x=4可得z= ,∴ =(4,0, ),

由(1)知平面ADF的一個(gè)法向量為 =( ,1,0),

設(shè)二面角D﹣AF﹣E的平面角為θ,可知θ為銳角,

cosθ=|cos< , >|= = =

∴二面角D﹣AF﹣E的余弦值為:


【解析】(1)結(jié)合已知又直線和平面垂直的判定定理可判PC⊥平面ADF,即得所求;(2)由已知數(shù)據(jù)求出必要的線段的長(zhǎng)度,建立空間直角坐標(biāo)系,由向量法計(jì)算即可.
【考點(diǎn)精析】掌握直線與平面垂直的判定是解答本題的根本,需要知道一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)滿足f(x)=f′(1)ex1﹣f(0)x+ x2;
(1)求f(x)的解析式及單調(diào)區(qū)間;
(2)若 ,求(a+1)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲、乙兩車(chē)間的月產(chǎn)值在2017年1月份相同,甲車(chē)間以后每個(gè)月比前一個(gè)月增加相同的產(chǎn)值,乙車(chē)間以后每個(gè)月比前一個(gè)月增加產(chǎn)值的百分比相同.到2017年7月份發(fā)現(xiàn)兩車(chē)間的月產(chǎn)值又相同,比較甲、乙兩個(gè)車(chē)間2017年4月份月產(chǎn)值的大小,則(  )

A. 甲車(chē)間大于乙車(chē)間 B. 甲車(chē)間等于乙車(chē)間

C. 甲車(chē)間小于乙車(chē)間 D. 不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正三棱錐P﹣ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連接PE并延長(zhǎng)交AB于點(diǎn)G.

(1)證明:G是AB的中點(diǎn);
(2)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說(shuō)明作法及理由),并求四面體PDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓C的方程為 (θ為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長(zhǎng)度,直線的極坐標(biāo)方程.

(Ⅰ)當(dāng)時(shí),判斷直線的關(guān)系;

(Ⅱ)當(dāng)上有且只有一點(diǎn)到直線的距離等于時(shí),求上到直線距離為的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)f(x)=2|xm|﹣1(m為實(shí)數(shù))為偶函數(shù),記a=f(log0.53),b=f(log25),c=f(2m),則a,b,c的大小關(guān)系為(
A.a<b<c
B.c<a<b
C.a<c<b
D.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)在5秒內(nèi)的任何時(shí)刻,兩條不相關(guān)的短信機(jī)會(huì)均等地進(jìn)入同一部手機(jī),若這兩條短信進(jìn)入手機(jī)的時(shí)間之差小于2秒,手機(jī)就會(huì)受到干擾,則手機(jī)受到干擾的概率為_________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲廠以x千克/小時(shí)的速度運(yùn)輸生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時(shí)可獲得利潤(rùn)是100(5x+1﹣ )元.
(1)寫(xiě)出生產(chǎn)該產(chǎn)品t(t≥0)小時(shí)可獲得利潤(rùn)的表達(dá)式;
(2)要使生產(chǎn)該產(chǎn)品2 小時(shí)獲得的利潤(rùn)不低于3000元,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x∈R恒有f(x+1)=f(x﹣1),已知當(dāng)x∈[0,1]時(shí),f(x)=( 1x , 則
①2是函數(shù)f(x)的一個(gè)周期;
②函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);
③函數(shù)f(x)的最大值是1,最小值是0;
④x=1是函數(shù)f(x)的一個(gè)對(duì)稱軸;
⑤當(dāng)x∈(3,4)時(shí),f(x)=( x3
其中所有正確命題的序號(hào)是

查看答案和解析>>

同步練習(xí)冊(cè)答案