【題目】已知甲、乙兩車間的月產(chǎn)值在2017年1月份相同,甲車間以后每個月比前一個月增加相同的產(chǎn)值,乙車間以后每個月比前一個月增加產(chǎn)值的百分比相同.到2017年7月份發(fā)現(xiàn)兩車間的月產(chǎn)值又相同,比較甲、乙兩個車間2017年4月份月產(chǎn)值的大小,則(  )

A. 甲車間大于乙車間 B. 甲車間等于乙車間

C. 甲車間小于乙車間 D. 不確定

【答案】A

【解析】

設(shè)甲車間以后每個月比前一個月增加相同的產(chǎn)值a,乙車間每個月比前一個月增加產(chǎn)值的百分比為x,甲、乙兩車間的月產(chǎn)值在2017年1月份均為m,則由題意得m+6am×(1+x)6.①

4月份甲車間的月產(chǎn)值為m+3a,4月份乙車間的月產(chǎn)值為m×(1+x)3

知,(1+x)6=1+,即4月份乙車間的月產(chǎn)值為m ,∵(m+3a)2-(m2+6ma)=9a2>0,∴m+3a,即4月份甲車間的月產(chǎn)值大于乙車間的月產(chǎn)值.

故答案為:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列命題中:
①存在一個平面與正方體的12條棱所成的角都相等;
②存在一個平面與正方體的6個面所成較小的二面角都相等;
③存在一條直線與正方體的12條棱所成的角都相等;
④存在一條直線與正方體的6個面所成的角都相等.
其中真命題的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班50位學(xué)生期中考試數(shù)學(xué)成績的頻率直方分布圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求圖中x的值;
(2)從成績不低于80分的學(xué)生中隨機選取2人,該2人中成績在90分以上(含90分)的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)中,設(shè)橢圓的左右兩個焦點分別為,過右焦點且與軸垂直的直線與橢圓相交,其中一個交點為.

(1)求橢圓的方程;

(2)已知經(jīng)過點且斜率為,直線與橢圓有兩個不同的交點,請問是否存在常數(shù),使得向量共線?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l上兩點M,N的極坐標(biāo)分別為(2,0),( ),圓C的參數(shù)方程 (θ為參數(shù)).
(Ⅰ)設(shè)P為線段MN的中點,求直線OP的平面直角坐標(biāo)方程;
(Ⅱ)判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個從生活垃圾中提煉生物柴油的項目.經(jīng)測算該項目月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似地表示為:

,且每處理一噸生活垃圾,可得到能利用的生物柴油價值為200元,若該項目不獲利,政府將給予補貼.

1)當(dāng)時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損?

2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合.對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n);記K(A)為|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;

1

1

﹣0.8

0.1

﹣0.3

﹣1


(2)設(shè)數(shù)表A∈S(2,3)形如

1

1

c

a

b

﹣1

求K(A)的最大值;
(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于點F,F(xiàn)E∥CD,交PD于點E.

(1)證明:CF⊥平面ADF;
(2)求二面角D﹣AF﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sinxcos(x﹣ )+cos2x﹣
(1)求函數(shù)f(x)的最大值,并寫出f(x)取最大值x時的取值集合;
(2)若f(x0)= ,x0∈[ , ],求cos2x0的值.

查看答案和解析>>

同步練習(xí)冊答案