【題目】已知函數(shù),
(1)當時,求函數(shù)的單調區(qū)間;
(2)設函數(shù),若,且在上恒成立,求的取值范圍;
(3)設函數(shù),若,且在上存在零點,求的取值范圍.
【答案】(1)函數(shù)的單調減區(qū)間為,單調增區(qū)間為(2)(3)
【解析】
(1)由得,對其求導,用導函數(shù)方法判斷其單調性即可;
(2)由得,當時,根據(jù)二次函數(shù)的性質,即可求出結果;當,由分離參數(shù)的方法得到恒成立,設,用導數(shù)的方法求出其最小值,即可得出結果;
(3)根據(jù)題中條件,將在上存在零點,轉化為在上有解,設,用導數(shù)的方法判斷,進而得到,再令,對其求導,用導數(shù)的方法研究其單調性,得出最小值,即可求出結果.
【解】(1)當時,,所以.
令,得.
因為函數(shù)g(x)的定義域為,
當時,;當時,,
所以函數(shù)g(x)的單調減區(qū)間為(0,2),單調增區(qū)間為.
(2)因為,所以
當時,由恒成立,
則有當,即時,恒成立;
當,即時,,
所以.
綜上,.
當時,由恒成立,即恒成立.
設,則.
令,得,
且當時,;當時,,
所以,所以.
綜上所述,b的取值范圍是.
(3).
因為u(x)在上存在零點,所以在上有解,
即在上有解.
又因為,即,
所以在上有解.
設,則,
令,得,且當時,;當時,,所以,即,所以,
因此.
設,則,
同理可證:,所以,
于是在上單調遞減,在上單調遞增,
所以,故.
科目:高中數(shù)學 來源: 題型:
【題目】(題文)(2017·長春市二模)如圖,在四棱錐中,底面是菱形,,平面,,點,分別為和中點.
(1)求證:直線平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象的頂點坐標為,且過坐標原點.數(shù)列的前項和為,點在二次函數(shù)的圖象上.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設,數(shù)列的前項和為,若對恒成立,求實數(shù)的取值范圍;
(Ⅲ)在數(shù)列中是否存在這樣一些項:,這些項都能夠構成以為首項,為公比的等比數(shù)列?若存在,寫出關于的表達式;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】舉行動物運動會其中有小兔大兔接力賽跑一項,跑道從起點經過點再到終點,其中米,米,規(guī)定小兔跑第一棒從到,大兔在處接力完成跑第二棒從到,假定接力賽跑時小兔大兔的各自速度都是均勻的,且它們的速度之和為定值10米/秒,試問小兔和大兔應以怎樣的速度接力賽跑,才能使接力賽成績最好(所需時間最短),并求其最短時間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若關于x的方程有解,求實數(shù)a的最小整數(shù)值;
(2)若對任意的,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù), (是自然對數(shù)的底數(shù), ).
(Ⅰ)求證: ;
(Ⅱ)已知表示不超過的最大整數(shù),如, ,若對任意,都存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學家謝爾賓斯基1915年提出.具體操作是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形,如圖.
現(xiàn)在上述圖(3)中隨機選取一個點,則此點取自陰影部分的概率為_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右兩焦點分別為、.
(1)若矩形的邊在軸上,點、均在上,求該矩形繞軸旋轉一周所得圓柱側面積的取值范圍;
(2)設斜率為的直線與交于、兩點,線段的中點為(),求證:;
(3)過上一動點作直線,其中,過作直線的垂線交軸于點,問是否存在實數(shù),使得恒成立,若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com