【題目】宜昌一中江南新校區(qū)擬建一個扇環(huán)形狀的花壇(如圖所示),按設計要求扇環(huán)的周長為30米,其中大圓弧所在圓的半徑為10米,設小圓弧所在圓的半徑為米,圓心角(弧度).

(1)求關于的函數(shù)關系式;

(2)已知對花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米,設花壇的面積與裝飾總費用之比為,求關于的函數(shù)關系式,并求出的最大值.

【答案】(1);

(2)的最大值為.

【解析】試題分析:(1)根據(jù)扇環(huán)的周長等于兩段弧長加兩段線段,可得,解得,根據(jù)題意求自變量取值范圍;(2)分別求出花壇的面積與裝飾總費用,從而可得關于的函數(shù)關系式為,再變量分離,最后利用基本不等式求最值,注意等于號是否在定義區(qū)間.

試題解析:(1)由題可知,所以,.

(2)花壇的面積為),

裝飾總費用為,

所以花壇的面積與裝飾總費用之比為.

,,則

當且僅當時取等號,此時.

故花壇的面積與裝飾總費用之比為,且的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學學生參加數(shù)學競賽培訓,在培訓期間他們參加5項預賽,成績?nèi)缦拢?/span>

甲:78 76 74 90 82

乙:90 70 75 85 80

)用莖葉圖表示這兩組數(shù)據(jù);

)現(xiàn)要從中選派一人參加數(shù)學競賽,從平均數(shù)、方差的角度考慮,你認為選派哪位學生參加合適?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若存在兩個極值點,求證:無論實數(shù)取什么值都有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究性學習小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于25”的概率;

(2)請根據(jù)3月2日至3月4日的數(shù)據(jù),求出關于的線性回歸方程.

(參考公式:回歸直線方程為,其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某電子元件進行壽命追蹤調(diào)查,所得情況如右頻率分布直方圖.

1)圖中縱坐標處刻度不清,根據(jù)圖表所提供的數(shù)據(jù)還原;

2)根據(jù)圖表的數(shù)據(jù)按分層抽樣,抽取個元件,壽命為之間的應抽取幾個;

3)從(2)中抽出的壽命落在之間的元件中任取個元件,求事件恰好有一個壽命為,一個壽命為的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于某設備的使用年限與所支出的維修費用萬元,有如下統(tǒng)計資料:

呈線性相關關系,試求:

1線性回歸方程的回歸系數(shù);

2估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年天貓五一活動結束后,某地區(qū)研究人員為了研究該地區(qū)在五一活動中消費超過3000元的人群的年齡狀況,隨機在當?shù)叵M超過3000元的群眾中抽取了500人作調(diào)查,所得概率分布直方圖如圖所示:記年齡在, , 對應的小矩形的面積分別是,且.

(1)以頻率作為概率,若該地區(qū)五一消費超過3000元的有30000人,試估計該地區(qū)在五一活動中消費超過3000元且年齡在的人數(shù);

(2)計算在五一活動中消費超過3000元的消費者的平均年齡;

(3)若按照分層抽樣,從年齡在, 的人群中共抽取7人,再從這7人中隨機抽取2人作深入調(diào)查,求至少有1人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列說法:①球的半徑是球面上任意一點與球心的連線;②球的直徑是球面上任意兩點的連線;③用一個平面截一個球面,得到的是一個圓;④球常用表示球心的字母表示.

其中說法正確的是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)設,的單調(diào)區(qū)間;

(2)若處取得極大值,求實數(shù)的取值范圍

查看答案和解析>>

同步練習冊答案