【題目】對某電子元件進(jìn)行壽命追蹤調(diào)查,所得情況如右頻率分布直方圖.
(1)圖中縱坐標(biāo)處刻度不清,根據(jù)圖表所提供的數(shù)據(jù)還原;
(2)根據(jù)圖表的數(shù)據(jù)按分層抽樣,抽取個元件,壽命為之間的應(yīng)抽取幾個;
(3)從(2)中抽出的壽命落在之間的元件中任取個元件,求事件“恰好有一個壽命為,一個壽命為”的概率.
【答案】(1);(2)應(yīng)抽取個;(3).
【解析】
試題分析:(1)根據(jù)題意:,即可求得的值;(2)設(shè)在壽命為之間的應(yīng)抽取個,根據(jù)分層抽樣有:,即可求解壽命為之間的應(yīng)抽取幾個;(3)記“恰好有一個壽命為,一個壽命為”為事件,由(2)知壽命落在之間的元件有個分別記,落在之間的元件有個分別記為:,從中任取個球,即可利用古典概型求解概率.
試題解析:(1)根據(jù)題意:
解得
(2)設(shè)在壽命為之間的應(yīng)抽取個,根據(jù)分層抽樣有:
解得: 所以應(yīng)在壽命為之間的應(yīng)抽取個
(3)記“恰好有一個壽命為,一個壽命為”為事件,
由(2)知壽命落在之間的元件有個分別記,落在之間的元件有個分別記為:,從中任取個球,有如下基本事件:
,,
,共有個基本事件
事件 “恰好有一個壽命為,一個壽命為”有:
,共有個基本事件
答:事件“恰好有一個壽命為,另一個壽命為”的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.
(1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的,2倍后得到曲線,試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;
(2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋擲兩顆骰子,計(jì)算:
(1)事件“兩顆骰子點(diǎn)數(shù)相同”的概率;
(2)事件“點(diǎn)數(shù)之和小于7”的概率;
(3)事件“點(diǎn)數(shù)之和等于或大于11”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的方程為.
(I)若點(diǎn)在圓的外部,求的取值范圍;
(II)當(dāng)時,是否存在斜率為的直線,使以被圓截得的弦為直徑所作的圓過原點(diǎn)?若存在,求出的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)有兩個定點(diǎn)A(1,0),B(1,﹣2),設(shè)點(diǎn)P到A、B的距離分別為,且
(I)求點(diǎn)P的軌跡C的方程;
(II)是否存在過點(diǎn)A的直線與軌跡C相交于E、F兩點(diǎn),滿足(O為坐標(biāo)原點(diǎn)).若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】宜昌一中江南新校區(qū)擬建一個扇環(huán)形狀的花壇(如圖所示),按設(shè)計(jì)要求扇環(huán)的周長為30米,其中大圓弧所在圓的半徑為10米,設(shè)小圓弧所在圓的半徑為米,圓心角(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知對花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時,直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米,設(shè)花壇的面積與裝飾總費(fèi)用之比為,求關(guān)于的函數(shù)關(guān)系式,并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)為和Sn,點(diǎn)(n,)在直線y=x+上.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(nN*),且b3=11,前9項(xiàng)和為153.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和
(3)設(shè)nN*,f(n)=問是否存在mN*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標(biāo)志為“連續(xù)10天,每天新增疑似病例不超過7人”。根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是 ( )
A. 甲地:總體均值為3,中位數(shù)為4
B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3
D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓臺的底面內(nèi)的任意一條直徑與另一個底面的位置關(guān)系是 ( )
A.平行B.相交C.在平面內(nèi)D.不確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com