【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若,且對(duì)任意的,都有,求的取值范圍.

【答案】(Ⅰ)見解析;(Ⅱ)

【解析】

(Ⅰ)對(duì)a分兩種情況討論,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性;(Ⅱ)當(dāng)時(shí),由(Ⅰ)知上單調(diào)遞增,在上單調(diào)遞減.再對(duì)a分三種情況討論,利用導(dǎo)數(shù)研究不等式的恒成立問題得解.

(Ⅰ)函數(shù)的定義域?yàn)?/span>.

(i)當(dāng)時(shí),恒成立,

上單調(diào)遞增.

(ii)當(dāng)時(shí),在,在,

上單調(diào)遞增,在上單調(diào)遞減.

綜上,當(dāng)時(shí),上單調(diào)遞增;當(dāng)時(shí),上單調(diào)遞增,在上單調(diào)遞減.

(Ⅱ)當(dāng)時(shí),由(Ⅰ)知上單調(diào)遞增,在上單調(diào)遞減.

①當(dāng),即時(shí),上單調(diào)遞減,

,,解得.

.

②當(dāng),即時(shí),上單調(diào)遞增,

,,解得.

.

③當(dāng),即時(shí),上單調(diào)遞增,在上單調(diào)遞減.

.

,即.

,

易得,所以上單調(diào)遞增.

又∵,∴對(duì)任意的,都有.

.

綜上所述,的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐的三條側(cè)棱兩兩垂直,,分別是棱的中點(diǎn).

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)定義:“對(duì)于在區(qū)域上有定義的函數(shù),若滿足恒成立,則稱曲線為曲線在區(qū)域上的緊鄰曲線”.試問曲線與曲線是否存在相同的緊鄰直線,若存在,請(qǐng)求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在滿足下列三個(gè)條件的集合,,,則稱偶數(shù)萌數(shù)

①集合,為集合個(gè)非空子集,,兩兩之間的交集為空集,且;②集合中的所有數(shù)均為奇數(shù),集合中的所有數(shù)均為偶數(shù),所有的倍數(shù)都在集合中;③集合,所有元素的和分別為,,,且.注:

1)判斷:是否為萌數(shù)?若為萌數(shù),寫出符合條件的集合,,若不是萌數(shù),說明理由.

2)證明:偶數(shù)為萌數(shù)成立的必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過點(diǎn)P(-1,2)且與兩坐標(biāo)軸的正半軸所圍成的三角形面積等于

(1)求直線l的方程.

(2)求圓心在直線l上且經(jīng)過點(diǎn)M(2,1),N(4,-1)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】英語老師要求學(xué)生從星期一到星期四每天學(xué)習(xí)3個(gè)英語單詞:每周五對(duì)一周內(nèi)所學(xué)單詞隨機(jī)抽取若干個(gè)進(jìn)行檢測(cè)(一周所學(xué)的單詞每個(gè)被抽到的可能性相同)

(1)英語老師隨機(jī)抽了個(gè)單詞進(jìn)行檢測(cè),求至少有個(gè)是后兩天學(xué)習(xí)過的單詞的概率;

(2)某學(xué)生對(duì)后兩天所學(xué)過的單詞每個(gè)能默寫對(duì)的概率為,對(duì)前兩天所學(xué)過的單詞每個(gè)能默寫對(duì)的概率為,若老師從后三天所學(xué)單詞中各抽取一個(gè)進(jìn)行檢測(cè),求該學(xué)生能默寫對(duì)的單詞的個(gè)數(shù)的分布列和期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面上動(dòng)點(diǎn)到點(diǎn)的距離與到直線的距離之比為,記動(dòng)點(diǎn)的軌跡為曲線.

1)求曲線的方程;

2)設(shè)是曲線上的動(dòng)點(diǎn),直線的方程為.

①設(shè)直線與圓交于不同兩點(diǎn), ,求的取值范圍;

②求與動(dòng)直線恒相切的定橢圓的方程;并探究:若是曲線 上的動(dòng)點(diǎn),是否存在直線 恒相切的定曲線?若存在,直接寫出曲線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在極坐標(biāo)系下,已知圓O和直線

1求圓O和直線l的直角坐標(biāo)方程;

2當(dāng)時(shí),求直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)?/span>, , 當(dāng)時(shí),, 則函數(shù)在區(qū)間上的所有零點(diǎn)的和為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案