【題目】2016年6月22 日,“國(guó)際教育信息化大會(huì)”在山東青島開(kāi)幕.為了解哪些人更關(guān)注“國(guó)際教育信息化大會(huì)”,某機(jī)構(gòu)隨機(jī)抽取了年齡在15-75歲之間的100人進(jìn)行調(diào)查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為: .把年齡落在區(qū)間和 內(nèi)的人分別稱(chēng)為 “青少年”和“中老年”.
(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)(保留兩位小數(shù))和眾數(shù);
(2)根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為“中老年”比“青少年”更加關(guān)注“國(guó)際教育信息化大會(huì)”;
附:參考公式,其中.
臨界值表:
【答案】(1)36.43;(2)有的把握認(rèn)為“中老年”比“青少年”更加關(guān)注“國(guó)際教育信息化大會(huì)”
【解析】試題分析:(1)根據(jù)頻率分布直方圖可知樣本的眾數(shù)為40,因?yàn)?/span>,
設(shè)樣本的中位數(shù)為,則,所以,即樣本的中位數(shù)約為36.43.(2)分別求得“青少年人”及“中老年人”人數(shù),完成2×2列聯(lián)表,求K2,與臨界值對(duì)比,即可得到有99%的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注兩會(huì).
試題解析:
(1)根據(jù)頻率分布直方圖可知樣本的眾數(shù)為40,因?yàn)?/span>,
設(shè)樣本的中位數(shù)為,則,所以,即樣本的中位數(shù)約為36.43.
(2)依題意可知,抽取的“青少年”共有人,“中老年”共有人.
完成的列聯(lián)表如下:
結(jié)合列聯(lián)表的數(shù)據(jù)得 ,
因?yàn)?/span>,
所以有的把握認(rèn)為“中老年”比“青少年”更加關(guān)注“國(guó)際教育信息化大會(huì)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】斜三棱柱A1B1C1﹣ABC中,側(cè)面AA1C1C⊥底面ABC,側(cè)面AA1C1C是菱形,∠A1AC=60°,AC=3,AB=BC=2,E、F分別是A1C1 , AB的中點(diǎn).
(1)求證:EF∥平面BB1C1C;
(2)求證:CE⊥面ABC.
(3)求四棱錐E﹣BCC1B1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是:( )
A. 命題“若,則”的否命題為“若,則”
B. 命題“存在,使得”的否定是:“任意,都有”
C. 若命題“非”與命題“或”都是真命題,那么命題一定是真命題
D. 命題“若,則”的逆命題是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在等差數(shù)列中,已知,前項(xiàng)和為,且,求當(dāng)取何值時(shí), 取得最大值,并求出它的最大值;
(2)已知數(shù)列的通項(xiàng)公式是,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的左、右頂點(diǎn)分別為,上、下頂點(diǎn)分別為,兩個(gè)焦點(diǎn)分別為, ,四邊形的面積是四邊形的面積的2倍.
(1)求橢圓的方程;
(2)過(guò)橢圓的右焦點(diǎn)且垂直于軸的直線(xiàn)交橢圓于兩點(diǎn), 是橢圓上位于直線(xiàn)兩側(cè)的兩點(diǎn).若,求證:直線(xiàn)的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(1)證明:平面PQC⊥平面DCQ
(2)求二面角Q﹣BP﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知cosα= ,cos(α+β)=﹣ ,且α,β∈(0, ),則cos(α﹣β)的值等于( )
A.﹣
B.
C.﹣
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左,右焦點(diǎn)分別為.點(diǎn)在橢圓上,直線(xiàn)過(guò)坐標(biāo)原點(diǎn),若, .
(1)求橢圓的方程;
(2) 設(shè)橢圓在點(diǎn)處的切線(xiàn)記為直線(xiàn),點(diǎn)在上的射影分別為,過(guò)作的垂線(xiàn)交軸于點(diǎn),試問(wèn)是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐P﹣ABCD的四條側(cè)棱長(zhǎng)相等,底面ABCD為正方形,M為PB的中點(diǎn),求證:
(Ⅰ)PD∥平面ACM;
(Ⅱ)PO⊥平面ABCD;
(Ⅲ)若PA=AB,求異面直線(xiàn)PD與CM所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com