【題目】四棱錐P﹣ABCD的四條側(cè)棱長相等,底面ABCD為正方形,M為PB的中點,求證:
(Ⅰ)PD∥平面ACM;
(Ⅱ)PO⊥平面ABCD;
(Ⅲ)若PA=AB,求異面直線PD與CM所成角的正弦值.
【答案】證明:(Ⅰ)連接OM,正方形ABCD中,OB=OD,
M為PB的中點,
∴PD∥OM,
∵OM面ACM,PD不在面ACM內(nèi),
∴PD∥面ACM;
(Ⅱ)∵PA=PC,OA=OC,∴PO⊥AC,同理PO⊥BD,
AC∩BD=O,
∴PO⊥面ABCD.
(Ⅲ)以O(shè)為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,
∵四棱錐P﹣ABCD的四條側(cè)棱長相等,底面ABCD為正方形,M為PB的中點,PA=AB,設(shè)AB=1,
可得:D(﹣ ,﹣ ,0),P(0,0, ),C( ,﹣ ,0),B( , ,0),M( , , ),
可得: =(﹣ ,﹣ ,﹣ ), =(﹣ , , ),
∴cos< , >= =﹣ ,
設(shè)異面直線PD與CM所成角為α,
∴sinα=﹣ .
【解析】(Ⅰ)欲證PD∥面ACM,根據(jù)直線與平面平行的判定定理可知只需證PD與面ACM內(nèi)一直線平行即可,連接OM,而OB=OD,則PD∥OM,OM面ACM,PD不在面ACM內(nèi),滿足定理所需條件;(Ⅱ)欲證PO⊥面ABCD,根據(jù)直線與平面垂直的判定定理可知只需證PO與面ABCD內(nèi)兩相交直線垂直,而PA=PC,OA=OC,則PO⊥AC,同理PO⊥BD,AC∩BD=O,滿足定理所需條件;(Ⅲ)以O(shè)為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,利用cos< , >= 可得:異面直線PB與AD所成角.
【考點精析】利用異面直線及其所成的角和直線與平面平行的判定對題目進(jìn)行判斷即可得到答案,需要熟知異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系;平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年6月22 日,“國際教育信息化大會”在山東青島開幕.為了解哪些人更關(guān)注“國際教育信息化大會”,某機構(gòu)隨機抽取了年齡在15-75歲之間的100人進(jìn)行調(diào)查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為: .把年齡落在區(qū)間和 內(nèi)的人分別稱為 “青少年”和“中老年”.
(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)(保留兩位小數(shù))和眾數(shù);
(2)根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為“中老年”比“青少年”更加關(guān)注“國際教育信息化大會”;
附:參考公式,其中.
臨界值表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F、G分別是棱A1B1、BB1、B1C1的中點,則下列結(jié)論中:
①FG⊥BD
②B1D⊥面EFG
③面EFG∥面ACC1A1
④EF∥面CDD1C1
正確結(jié)論的序號是( )
A.①和②
B.②和④
C.①和③
D.③和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市對創(chuàng)“市級優(yōu)質(zhì)學(xué)!钡募、乙兩所學(xué)校復(fù)查驗收,對辦學(xué)的社會滿意度一項評價隨機訪問了位市民,根據(jù)這位市民對這兩所學(xué)校的評分(評分越高表明市民的評價越好),繪制莖葉圖如下:
(1)分別估計該市的市民對甲、乙兩所學(xué)校評分的中位數(shù);
(2)分別估計該市的市民對甲、乙兩所學(xué)校的評分不低于分的概率;
(3)根據(jù)莖葉圖分析該市的市民對甲、乙兩所學(xué)校的評價.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直.EF∥AC,AB= ,CE=EF=1. (Ⅰ)求證:AF∥平面BDE;
(Ⅱ)求證:CF⊥平面BDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在寒假社會實踐活動中,對白天平均氣溫與某家奶茶店的品牌飲料銷量之間的關(guān)系進(jìn)行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫()與該奶茶店的品牌飲料銷量(杯),得到如表數(shù)據(jù):
日期 | 1月11號 | 1月12號 | 1月13號 | 1月14號 | 1月15號 |
平均氣溫() | 9 | 10 | 12 | 11 | 8 |
銷量(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程式;
(3)根據(jù)(2)所得的線性回歸方程,若天氣預(yù)報1月16號的白天平均氣溫為,請預(yù)測該奶茶店這種飲料的銷量.
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD所在的半平面和直角梯形CDEF所在的半平面成60°的二面角,DE∥CF,CD⊥DE,AD=2, ,CF=6,∠CFE=45°.
(Ⅰ)求證:BF∥平面ADE;
(Ⅱ)在線段CF上求一點G,使銳二面角B﹣EG﹣D的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,李先生家住H小區(qū),他工作在C科技園區(qū),從家開車到公司上班路上有L1、L2兩條路線,L1路線上有A1、A2、A3三個路口,各路口遇到紅燈的概率均為 ;L2路線上有B1、B2兩個路口,各路口遇到紅燈的概率依次為 , .
(1)若走L1路線,求最多遇到1次紅燈的概率;
(2)若走L2路線,求遇到紅燈次數(shù)X的數(shù)學(xué)期望;
(3)按照“平均遇到紅燈次數(shù)最少”的要求,請你幫助李先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com