12.函數(shù)y=f(x) 的圖象與直線x=m的交點的個數(shù)是( 。
A.0B.1C.0或1D.無法確定

分析 根據(jù)函數(shù)的定義可得函數(shù)y=f(x)的圖象與直線x=m至多有一個交點,由此得到結(jié)論.

解答 解:根據(jù)函數(shù)y=f(x)的定義,當x在定義域內(nèi)任意取一個值,都有唯一的一個函數(shù)值f(x)與之對應(yīng),函數(shù)y=f(x)的圖象與直線x=m有唯一交點.
當x不在定義域內(nèi)時,函數(shù)值f(x)不存在,函數(shù)y=f(x)的圖象與直線x=m沒有交點.
故函數(shù)y=f(x)的圖象與直線x=m至多有一個交點,即函數(shù)y=f(x)的圖象與直線x=m的交點的個數(shù)是 0或1,
故選:C.

點評 本題主要考查函數(shù)的定義,函數(shù)圖象的作法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某成衣批發(fā)店為了對一款成衣進行合理定價,將該款成衣按事先擬定的價格進行試銷,得到了如下數(shù)據(jù):
批發(fā)單價x(元)808284868890
銷售量y(件)908483807568
(1)求回歸直線方程$\hat y=\hat bx+\hat a$,其中$\hat b=-2$
(2)預(yù)測批發(fā)單價定為85元時,銷售量大概是多少件?
(3)假設(shè)在今后的銷售中,銷售量與批發(fā)單價仍然服從(1)中的關(guān)系,且該款成衣的成本價為40元/件,為使該成衣批發(fā)店在該款成衣上獲得更大利潤,該款成衣單價大約定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$\frac{1+2i}{a+bi}$=1-i(i為虛數(shù)單位,a,b∈R),則|a+bi|=( 。
A.$\frac{1}{2}+\frac{3}{2}i$B.1C.2D.$\frac{{\sqrt{10}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某醫(yī)院有內(nèi)科醫(yī)生6人,外科醫(yī)生4人.
(1)現(xiàn)要選派4名醫(yī)生參加賑災(zāi)醫(yī)療隊,內(nèi)科醫(yī)生和外科醫(yī)生都要有人,不同的選派方法有多少種?
(2)現(xiàn)要選派6名醫(yī)生參加3個不同地方的賑災(zāi)醫(yī)療隊,要求每個地方由一名外科醫(yī)生和一名內(nèi)科醫(yī)生組成,不同的選派方法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.下列命題中:
 ①回歸直線除了經(jīng)過樣本點的中心,還至少經(jīng)過一個樣本點;
 ②將一組數(shù)據(jù)中的每個數(shù)都減去同一個數(shù)后,平均值有變化,方差沒有變化;
③對分類變量X與Y,它們的隨機變量K2的觀測值k越小,“X與Y有關(guān)系”的把握程度越大;
 ④比較兩個模型的擬合效果時,如果模型殘差平方和越小,則相應(yīng)的相關(guān)指數(shù)R2越大,該模型擬合的效果越好.
其中正確命題的序號為②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.廢品率x%和每噸生鐵成本y(元)之間的回歸直線方程為y=256+2x,表明(  )
A.廢品率每增加1%,生鐵成本增加258元
B.廢品率每增加1%,生鐵成本增加2元
C.廢品率每增加1%,生鐵成本每噸增加2元
D.廢品率不變,生鐵成本為256元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若指數(shù)函數(shù)f(x)的圖象過點(2,4),則f(4)=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù) f(x)=sinx+ax在R上是減函數(shù),則實數(shù)a的取值范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知點P為圓C:x2+y2=4上的動點,A(4,0),則線段AP中點M的軌跡方程為(  )
A.(x-2)2+y2=1B.(x+2)2+y2=1C.(x-2)2+y2=4D.x2+(y-2)2=4

查看答案和解析>>

同步練習(xí)冊答案