【題目】近年來(lái),共享單車(chē)已經(jīng)悄然進(jìn)入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務(wù)民眾,某共享單車(chē)公司在其官方中設(shè)置了用戶(hù)評(píng)價(jià)反饋系統(tǒng),以了解用戶(hù)對(duì)車(chē)輛狀況和優(yōu)惠活動(dòng)的評(píng)價(jià).現(xiàn)從評(píng)價(jià)系統(tǒng)中選出條較為詳細(xì)的評(píng)價(jià)信息進(jìn)行統(tǒng)計(jì),車(chē)輛狀況的優(yōu)惠活動(dòng)評(píng)價(jià)的列聯(lián)表如下:

對(duì)優(yōu)惠活動(dòng)好評(píng)

對(duì)優(yōu)惠活動(dòng)不滿意

合計(jì)

對(duì)車(chē)輛狀況好評(píng)

對(duì)車(chē)輛狀況不滿意

合計(jì)

(1)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為優(yōu)惠活動(dòng)好評(píng)與車(chē)輛狀況好評(píng)之間有關(guān)系?

(2)為了回饋用戶(hù),公司通過(guò)向用戶(hù)隨機(jī)派送騎行券.用戶(hù)可以將騎行券用于騎行付費(fèi),也可以通過(guò)轉(zhuǎn)贈(zèng)給友.某用戶(hù)共獲得了張騎行券,其中只有張是一元券.現(xiàn)該用戶(hù)從這張騎行券中隨機(jī)選取張轉(zhuǎn)贈(zèng)給好友,求選取的張中至少有張是一元券的概率.

參考數(shù)據(jù):

參考公式:,其中.

【答案】(1)見(jiàn)解析;(2)

【解析】

試題分析:(1)由由列聯(lián)表的數(shù)據(jù),算出卡方與作比較。(2)用枚舉法列出基本事件和滿足條件的事件,由古典概型得出概率。

試題解析:(1)由列聯(lián)表的數(shù)據(jù),有

.

因此,在犯錯(cuò)誤的概率不超過(guò)的前提下,不能認(rèn)為優(yōu)惠活動(dòng)好評(píng)與車(chē)輛狀況好評(píng)有關(guān)系.

(2)把張一元券分別記作,,其余張券分別記作,.

則從張騎行券中隨機(jī)選取張的所有情況為:,,,,,,,.共種.

記“選取的張中至少有張是一元券”為事件,則事件包含的基本事件個(gè)數(shù)為.

.

所以從張騎行券中隨機(jī)選取張轉(zhuǎn)贈(zèng)給好友,選取的張中至少有張是一元券的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,直線交橢圓兩點(diǎn).

(1)求橢圓的焦點(diǎn)坐標(biāo)及長(zhǎng)軸長(zhǎng);

(2)求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a3是a2與a6的等比中項(xiàng),2a1+3a2=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2a1+log2a2+…+log2an , 求數(shù)列{ }的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=a(x﹣lnx)+ ,a∈R.
(1)討論f(x)的單調(diào)性;
(2)當(dāng)a= 時(shí),證明:f(x)>f′(x)+ 對(duì)于任意的x∈[1,2]成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)市場(chǎng)調(diào)查,超市中的某種小商品在過(guò)去的近40天的日銷(xiāo)售量(單位:件)與價(jià)格(單位:元)為時(shí)間(單位:天)的函數(shù),且日銷(xiāo)售量近似滿足,價(jià)格近似滿足。

(1)寫(xiě)出該商品的日銷(xiāo)售額(單位:元)與時(shí)間)的函數(shù)解析式并用分段函數(shù)形式表示該解析式(日銷(xiāo)售額=銷(xiāo)售量商品價(jià)格);

(2)求該種商品的日銷(xiāo)售額的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代儒家要求學(xué)生掌握六種基本才藝:禮、樂(lè)、射、御、書(shū)、數(shù),簡(jiǎn)稱(chēng)“六藝”,某中學(xué)為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂(lè)、射、御、書(shū)、數(shù)”六場(chǎng)傳統(tǒng)文化知識(shí)的競(jìng)賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐、規(guī)定:每場(chǎng)知識(shí)競(jìng)賽前三名的得分都分別為,且);選手最后得分為各場(chǎng)得分之和,在六場(chǎng)比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場(chǎng)比賽中獲得第一名,則下列推理正確的是( )

A. 每場(chǎng)比賽第一名得分為4 B. 甲可能有一場(chǎng)比賽獲得第二名

C. 乙有四場(chǎng)比賽獲得第三名 D. 丙可能有一場(chǎng)比賽獲得第一名

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為打入國(guó)際市場(chǎng),決定從、兩種產(chǎn)品中選擇一種進(jìn)行投資生產(chǎn),已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬(wàn)美元)

年固定成本

每件產(chǎn)品成本

每件產(chǎn)品銷(xiāo)售價(jià)

每年最多可生產(chǎn)的件數(shù)

A產(chǎn)品

20

10

200

B產(chǎn)品

40

8

18

120

其中年固定成本與年生產(chǎn)的件數(shù)無(wú)關(guān),是待定常數(shù),其值由生產(chǎn)產(chǎn)品的原材料決定,預(yù)計(jì),另外,年銷(xiāo)售B產(chǎn)品時(shí)需上交萬(wàn)美元的特別關(guān)稅,假設(shè)生產(chǎn)出來(lái)的產(chǎn)品都能在當(dāng)年銷(xiāo)售出去.

(1)求該廠分別投資生產(chǎn)A、兩種產(chǎn)品的年利潤(rùn)與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系,并求出其定義域;

(2)如何投資才可獲得最大年利潤(rùn)?請(qǐng)?jiān)O(shè)計(jì)相關(guān)方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了解高一年級(jí)學(xué)生身高發(fā)育情況,對(duì)全校名高一年級(jí)學(xué)生按性別進(jìn)行分層抽樣檢查,測(cè)得身高(單位:)頻數(shù)分布表如表、表.

:男生身高頻數(shù)分布表

身高/

頻數(shù)

:女生身高頻數(shù)分布表

身高/

頻數(shù)

(1)求該校高一女生的人數(shù);

(2)估計(jì)該校學(xué)生身高在的概率;

(3)以樣本頻率為概率,現(xiàn)從高一年級(jí)的男生和女生中分別選出人,設(shè)表示身高在學(xué)生的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)定義域?yàn)?/span>,在區(qū)間上單調(diào)遞增的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案