【題目】在平面直角坐標(biāo)系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.
(1)在以為極點(diǎn),軸非負(fù)半軸為極軸的極坐標(biāo)系中,求曲線的極坐標(biāo)方程;
(2)若點(diǎn),為曲線上兩動(dòng)點(diǎn),且滿足,求面積的最大值.
【答案】(1) ;(2)
【解析】
(1)消去參數(shù),將圓的參數(shù)方程,轉(zhuǎn)化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標(biāo)方程.
(2)利用圓的參數(shù)方程以及輔助角公式,由此求得的面積的表達(dá)式,再由三角函數(shù)最值的求法,求得三角形面積的最大值.
解:(1)曲線的參數(shù)方程為(為參數(shù),),
所以其普通方程為,曲線:(為參數(shù)),所以其普通方程為,若曲線和相切,則,
所以曲線的極坐標(biāo)方程為.
(2)設(shè),所以所以當(dāng)時(shí),面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為考察某動(dòng)物疫苗預(yù)防某種疾病的效果,現(xiàn)對(duì)200只動(dòng)物進(jìn)行調(diào)研,并得到如下數(shù)據(jù):
未發(fā)病 | 發(fā)病 | 合計(jì) | |
未注射疫苗 | 20 | 60 | 80 |
注射疫苗 | 80 | 40 | 120 |
合計(jì) | 100 | 100 | 200 |
(附:)
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
則下列說法正確的:( )
A.至少有99.9%的把握認(rèn)為“發(fā)病與沒接種疫苗有關(guān)”
B.至多有99%的把握認(rèn)為“發(fā)病與沒接種疫苗有關(guān)”
C.至多有99.9%的把握認(rèn)為“發(fā)病與沒接種疫苗有關(guān)”
D.“發(fā)病與沒接種疫苗有關(guān)”的錯(cuò)誤率至少有0.01%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,點(diǎn),是曲線上的任意一點(diǎn),動(dòng)點(diǎn)滿足
(1)求點(diǎn)的軌跡方程;
(2)經(jīng)過點(diǎn)的動(dòng)直線與點(diǎn)的軌跡方程交于兩點(diǎn),在軸上是否存在定點(diǎn)(異于點(diǎn)),使得?若存在,求出的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形,四邊形為矩形,,為的中點(diǎn).
(1)求證:平面;
(2)二面角的大小可以為嗎?若可以求出此時(shí)的值,若不可以,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:(),點(diǎn)是的左頂點(diǎn),點(diǎn)為上一點(diǎn),離心率.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)的直線與的另一個(gè)交點(diǎn)為(異于點(diǎn)),是否存在直線,使得以為直徑的圓經(jīng)過點(diǎn),若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,為矩形,是以為直角的等腰直角三角形,平面平面.
(Ⅰ)證明:平面平面;
(Ⅱ)為直線的中點(diǎn),且,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,過的直線與橢圓相交于兩點(diǎn),且與軸相交于點(diǎn).
(1)若,求直線的方程;
(2)設(shè)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線過軸上的定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在極坐標(biāo)系中,O為極點(diǎn),點(diǎn)在曲線上,直線l過點(diǎn)且與垂直,垂足為P.
(1)當(dāng)時(shí),求及l的極坐標(biāo)方程;
(2)當(dāng)M在C上運(yùn)動(dòng)且P在線段OM上時(shí),求P點(diǎn)軌跡的極坐標(biāo)方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com