精英家教網 > 高中數學 > 題目詳情

【題目】已知甲、乙兩名工人在同樣條件下每天各生產100件產品,且每生產1件正品可獲利20元,生產1件次品損失30元,甲,乙兩名工人100天中出現次品件數的情況如表所示.

甲每天生產的次品數/件

0

1

2

3

4

對應的天數/天

40

20

20

10

10

乙每天生產的次品數/件

0

1

2

3

對應的天數/天

30

25

25

20

(1)將甲每天生產的次品數記為(單位:件),日利潤記為(單位:元),寫出的函數關系式;

(2)如果將統計的100天中產生次品量的頻率作為概率,記表示甲、乙兩名工人1天中各自日利潤不少于1950元的人數之和,求隨機變量的分布列和數學期望.

【答案】(1)見解析;(2)見解析

【解析】

(1)因為甲每天生產的次品數為,所以損失元,則其生產的正品數為,獲得的利潤為元,即可列出的函數關系式;

(2)由題意,可得甲、乙1天中生產的次品數不超過1的人數之和的可能取值,分別求得取每個值對應的概率,即可列出分布列,利用公式求解數學期望。

(1)因為甲每天生產的次品數為,所以損失元,

則其生產的正品數為,獲得的利潤為元,

因而的函數關系式為 ,其中.

(2)同理,對于乙來說,,.由,得

所以是甲、乙1天中生產的次品數不超過1的人數之和,所以的可能值為0,1,2,

又甲1天中生產的次品數不超過1的概率為,

乙1天中生產的次品數不超過1的概率為

所以,

,

,

所以隨機變量的分布列為

0

1

2

所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數.

(1)當時,求函數的單調區(qū)間;

(2)求函數的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐P-ABCD,底面ABCD是邊長為的正方形,平面PAC底面ABCD,PA=PC=

1)求證:PB=PD;

2)若點M,N分別是棱PA,PC的中點,平面DMN與棱PB的交點Q,則在線段BC上是否存在一點H,使得DQPH,若存在,BH的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學的新生開始,不分文理科;2020年高考總成績由語數外三門統考科目和物理、化學等六門選考科目組成,將每門選考科目的考生原始成績從高到低劃分為、、、8個等級,參照正態(tài)分布原則,確定各等級人數所占比例分別為3%7%、16%、24%、24%、16%7%、3%,選考科目成績計入考生總成績時,將AE等級內的考生原始成績,依照等比例轉換法則,分別轉換到、、、、,八個分數區(qū)間,得到考生的等級成績.某市高一學生共6000人,為給高一學生合理選科提供依據,對六門選考科目進行測試,其中化學考試原始成績大致服從正態(tài)分布

1)求該市化學原始成績在區(qū)間的人數;

2)以各等級人數所占比例作為各分數區(qū)間發(fā)生的概率,按高考改革方案,若從全省考生中隨機抽取3人,記X表示這3人中等級成績在區(qū)間的人數,求

(附:若隨機變量,則,,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】自古以來“民以食為天”,餐飲業(yè)作為我國第三產業(yè)中的一個支柱產業(yè),一直在社會發(fā)展與人民生活中發(fā)揮著重要作用.某機構統計了2010~2016年餐飲收入的情況,得到下面的條形圖,則下面結論中不正確的是( )

A. 2010~2016年全國餐飲收入逐年增加

B. 2016年全國餐飲收入比2010年翻了一番以上

C. 2010~2016年全國餐飲收入同比增量最多的是2015年

D. 2010~2016年全國餐飲收入同比增量超過3000億元的年份有3個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為了鼓勵運動提高所有用戶的身體素質,特推出一款運動計步數的軟件,所有用戶都可以通過每天累計的步數瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究日平均走步數和性別是否有關,統計了20191月份所有用戶的日平均步數,規(guī)定日平均步數不少于8000的為運動達人,步數在8000以下的為非運動達人,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯表:

運動達人

非運動達人

總計

35

60

26

總計

100

1)(i)將列聯表補充完整;

ii)據此列聯表判斷,能否有的把握認為日平均走步數和性別是否有關

2)從樣本中的運動達人中抽取7人參加幸運抽獎活動,通過抽獎共產生2位幸運用戶,求這2位幸運用戶恰好男用戶和女用戶各一位的概率.

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】五一勞動節(jié)放假,某商場進行一次大型抽獎活動.在一個抽獎盒中放有紅、橙、黃、綠、藍、紫的小球各2個,分別對應1分、2分、3分、4分、5分、6分.從袋中任取3個小球,按3個小球中最大得分的8倍計分,計分在20分到35分之間即為中獎.每個小球被取出的可能性都相等,用表示取出的3個小球中最大得分,求:

(1)取出的3個小球顏色互不相同的概率;

(2)隨機變量的概率分布和數學期望;

(3)求某人抽獎一次,中獎的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】個自然數隨機地排列在的正方形方格內,對于同一行或同一列中的任意兩個數,計算較大數與較小數的商,得到個分數.把最小的分數稱之為這種排列的“特征值”.試求特征值的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】閱讀下面的類比過程。

(1)在一維直線上,線段是一個封閉的中心對稱圖形,有命題1:不重合的兩點決定一條線段;

(2)在二維平面上,圓是一個封閉的中心對稱圖形,有命題2:不共線的三點決定一個圓;

(3)在三維空間中,球是一個封閉的中心對稱圖形,類比猜想:不共面的四點決定一個球。

證明或否定這個類比猜想:不共面的四點決定一個球。

查看答案和解析>>

同步練習冊答案