精英家教網 > 高中數學 > 題目詳情

【題目】已知是奇函數.

(1)求實數的值;

(2)求函數上的值域;

(3)令,求不等式的解集.

【答案】(1)見解析; (2)①當時,值域為; ②當時,值域為

(3).

【解析】

1)由奇函數得,可解出;(2)先換元),則,,再結合二次函數的圖像討論其值域;(3)先證到也為奇函數,用導數證得上單調增,將等價轉化為,所以,解出答案即可.

(1)函數的定義域為,因為為奇函數,由可知,,

所以,即

時,,此時為奇函數

所以

(2)令),所以

所以,對稱軸,

①當時,,所求值域為

②當時,,所求值域為

(3)因為為奇函數,所以

所以為奇函數,

所以等價于,

當且僅當時,等號成立,

所以上單調增,

所以,

,又

所以.所以不等式的解集是

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】甲、乙兩家銷售公司擬各招聘一名產品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.

(I)請將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數的函數關系式;

(II)從兩家公司各隨機選取一名推銷員,對他們過去100天的銷售情況進行統(tǒng)計,得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請回答下面問題:

某大學畢業(yè)生擬到兩家公司中的一家應聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.

【答案】(I)見解析; (Ⅱ)見解析.

【解析】分析:(I)依題意可得甲公司一名推銷員的工資與銷售件數的關系是一次函數的關系式,而乙公司是分段函數的關系式,由此解得;(Ⅱ)分別根據條形圖求得甲、乙公司一名推銷員的日工資的分布列,從而可分別求得數學期望,進而可得結論.

詳解:(I)由題意得,甲公司一名推銷員的日工資 (單位:) 與銷售件數的關系式為: .

乙公司一名推銷員的日工資 (單位: ) 與銷售件數的關系式為:

()記甲公司一名推銷員的日工資為 (單位: ),由條形圖可得的分布列為

122

124

126

128

130

0.2

0.4

0.2

0.1

0.1

記乙公司一名推銷員的日工資為 (單位: ),由條形圖可得的分布列為

120

128

144

160

0.2

0.3

0.4

0.1

∴僅從日均收入的角度考慮,我會選擇去乙公司.

點睛:求解離散型隨機變量的數學期望的一般步驟為:

第一步是判斷取值,即判斷隨機變量的所有可能取值,以及取每個值所表示的意義;

第二步是探求概率,即利用排列組合,枚舉法,概率公式,求出隨機變量取每個值時的概率;

第三步是寫分布列,即按規(guī)范形式寫出分布列,并注意用分布列的性質檢驗所求的分布列或某事件的概率是否正確;

第四步是求期望值,一般利用離散型隨機變量的數學期望的定義求期望的值

型】解答
束】
19

【題目】如圖,在四棱錐中,底面為菱形, 平面 , , 分別是, 的中點.

(1)證明:

(2)設為線段上的動點,若線段長的最小值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ln x+ax2-2x,aR,a≠0

(1)若函數f(x)的圖象在x=1處的切線與x軸平行,f(x)的單調區(qū)間;

(2)f(x)≤axx[,+∞)上恒成立,a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P—ABCD的底面是邊長為a的棱形,PD⊥底面ABCD.

1)證明:AC⊥平面PBD;

2)若PD=AD,直線PB與平面ABCD所成的角為45°,四棱錐PABCD的體積為,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(題文)某研究小組在電腦上進行人工降雨模擬實驗,準備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其實驗數據統(tǒng)計如下:

方式

實施地點

大雨

中雨

小雨

模擬實驗總次數

A

4

6

2

12

B

3

6

3

12

C

2

2

8

12

假定對甲、乙、丙三地實施的人工降雨彼此互不影響,請你根據人工降雨模擬實驗的統(tǒng)計數據:

(1)求甲、乙、丙三地都恰為中雨的概率;

(2)考慮到旱情和水土流失,如果甲地恰需中雨即達到理想狀態(tài),乙地必須是大雨才達到理想狀態(tài),丙地只要是小雨或中雨即達到理想狀態(tài),記甲、乙、丙三地中達到理想狀態(tài)的個數為隨機變量ξ,求隨機變量ξ的分布列和均值E(ξ).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列中,在直線

(1)求數列{an}的通項公式;

(2)令,數列的前n項和為

(ⅰ)求;

(ⅱ)是否存在整數λ,使得不等式(-1)nλ (nN)恒成立?若存在,求出λ的取值的集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,菱形ABCD中,∠ABC=60°,ACBD相交于點O,AE⊥平面ABCDCFAEABAE=2.

(1)求證:BD⊥平面ACFE;

(2)當直線FO與平面BED所成的角為45°時,求異面直線OFBE所成的角的余弦值大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(1)是否存在實數,使得等式 對于一切正整數都成立?若存在,求出,的值并給出證明;若不存在,請說明理由.

(2)求證:對任意的.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知是橢圓上的一點,從原點向圓作兩條切線,分別交橢圓于點

(1)若點在第一象限,且直線互相垂直,求圓的方程;

(2)若直線的斜率存在,并記為,求的值;

查看答案和解析>>

同步練習冊答案