【題目】(1)是否存在實(shí)數(shù),使得等式 對(duì)于一切正整數(shù)都成立?若存在,求出,,的值并給出證明;若不存在,請(qǐng)說(shuō)明理由.
(2)求證:對(duì)任意的,.
【答案】(1)見解析; (2)見解析.
【解析】
(1)對(duì)n進(jìn)行賦值,代入,求解方程組可求,證明使用數(shù)學(xué)歸納法;
(2)利用數(shù)學(xué)歸納法的步驟證明.
(1)在等式 中
令得①;令得②;
令得③;由①②③解得
對(duì)于都有 成立.
下面用數(shù)學(xué)歸納法證明:對(duì)一切正整數(shù),式都成立.
①當(dāng)時(shí),由上所述知式成立;
②假設(shè)當(dāng)時(shí)式成立,
即 ,
那么當(dāng)時(shí),
綜上:由①②得對(duì)一切正整數(shù),式都成立,所以存在時(shí)題設(shè)的等
式對(duì)于一切正整數(shù)都成立.
(2)證明:
①當(dāng)時(shí),左式,右式,所以左式<右式,則時(shí)不等式成立;
②假設(shè)當(dāng)時(shí)不等式成立,即,
那么當(dāng)時(shí),
下面證明當(dāng)時(shí),.
設(shè) ,則所以在上單調(diào)增,所以即時(shí),.
因?yàn)?/span>,所以則
因?yàn)?/span>
所以
由得
那么時(shí)不等式也成立.
綜上:由①②可得對(duì)任意 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)在一部向下運(yùn)行的手扶電梯終點(diǎn)的正上方豎直懸掛一幅廣告畫.如圖,該電梯的高AB為4米,它所占水平地面的長(zhǎng)AC為8米.該廣告畫最高點(diǎn)E到地面的距離為10.5米,最低點(diǎn)D到地面的距離6.5米.假設(shè)某人的眼睛到腳底的距離MN為1.5米,他豎直站在此電梯上觀看DE的視角為θ.
(1)設(shè)此人到直線EC的距離為x米,試用x表示點(diǎn)M到地面的距離;
(2)此人到直線EC的距離為多少米時(shí),視角θ最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)求函數(shù)在上的值域;
(3)令,求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在GH上的一點(diǎn)B的正北方向的A處建設(shè)一倉(cāng)庫(kù),設(shè),并在公路北側(cè)建造邊長(zhǎng)為的正方形無(wú)頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉(cāng)庫(kù)A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且.
(1)求關(guān)于的函數(shù)解析式,并求出定義域;
(2)如果中轉(zhuǎn)站四堵圍墻造價(jià)為10萬(wàn)元/km,兩條道路造價(jià)為30萬(wàn)元/km,問(wèn):取何值時(shí),該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價(jià)M最低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電力公司在工程招標(biāo)中是根據(jù)技術(shù)、商務(wù)、報(bào)價(jià)三項(xiàng)評(píng)分標(biāo)準(zhǔn)進(jìn)行綜合評(píng)分的,按照綜合得分的高低進(jìn)行綜合排序,綜合排序高者中標(biāo)。分值權(quán)重表如下:
總分 | 技術(shù) | 商務(wù) | 報(bào)價(jià) |
100% | 50% | 10% | 40% |
技術(shù)標(biāo)、商務(wù)標(biāo)基本都是由公司的技術(shù)、資質(zhì)、資信等實(shí)力來(lái)決定的。報(bào)價(jià)表則相對(duì)靈活,報(bào)價(jià)標(biāo)的評(píng)分方法是:基準(zhǔn)價(jià)的基準(zhǔn)分是68分,若報(bào)價(jià)每高于基準(zhǔn)價(jià)1%,則在基準(zhǔn)分的基礎(chǔ)上扣0.8分,最低得分48分;若報(bào)價(jià)每低于基準(zhǔn)價(jià)1%,則在基準(zhǔn)分的基礎(chǔ)上加0.8分,最高得分為80分。若報(bào)價(jià)低于基準(zhǔn)價(jià)15%以上(不含15%)每再低1%,在80分在基礎(chǔ)上扣0.8分。在某次招標(biāo)中,若基準(zhǔn)價(jià)為1000(萬(wàn)元)。甲、乙兩公司綜合得分如下表:
公司 | 技術(shù) | 商務(wù) | 報(bào)價(jià) |
甲 | 80分 | 90分 | 分 |
乙 | 70分 | 100分 | 分 |
甲公司報(bào)價(jià)為1100(萬(wàn)元),乙公司的報(bào)價(jià)為800(萬(wàn)元)則甲,乙公司的綜合得分,分別是
A. 73,75.4 B. 73,80 C. 74.6,76 D. 74.6 ,75.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,點(diǎn)E,F,G分別為棱AB,AA1,C1D1的中點(diǎn).下列結(jié)論中,正確結(jié)論的序號(hào)是______.
①過(guò)E,F,G三點(diǎn)作正方體的截面,所得截面為正六邊形;
②B1D1∥平面EFG;
③BD1⊥平面ACB1;
④異面直線EF與BD1所成角的正切值為;
⑤四面體ACB1D1的體積等于a3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,三點(diǎn)中恰有二點(diǎn)在橢圓上,且離心率為。
(1)求橢圓的方程;
(2)設(shè)為橢圓上任一點(diǎn), 為橢圓的左右頂點(diǎn), 為中點(diǎn),求證:直線與直線它們的斜率之積為定值;
(3)若橢圓的右焦點(diǎn)為,過(guò)的直線與橢圓交于,求證:直線與直線斜率之和為定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)部門隨機(jī)抽測(cè)生產(chǎn)某種零件的工人的日加工零件數(shù)(單位:件),其中A車間13人,B車間12人,獲得數(shù)據(jù)如下:
根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:
分組 | 頻數(shù) | 頻率 |
[25,30] | 3 | 0.12 |
(30,35] | 5 | 0.20 |
(35,40] | 8 | 0.32 |
(40,45] | n1 | f1 |
(45,50] | n2 | f2 |
(1)確定樣本頻率分布表中n1、n2、f1和f2的值;
(2)現(xiàn)從日加工零件數(shù)落在(40,45]的工人中隨機(jī)選取兩個(gè)人,求這兩個(gè)人中至少有一個(gè)來(lái)自B車間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x-a|-x(a>0).
(1)若a=3,解關(guān)于x的不等式f(x)<0;
(2)若對(duì)于任意的實(shí)數(shù)x,不等式f(x)-f(x+a)<a2+恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com