分析 (1)由f(1)=loga2+loga2=2,解得a=2.可得f(x)=log2(x+1)+log2(3-x),由$\left\{\begin{array}{l}{x+1>0}\\{3-x<0}\end{array}\right.$,可得函數f(x)的定義域.
(2)由(1)可知:f(x)=log2(x+1)+log2(3-x)=log2(x+1)(3-x)=$lo{g}_{2}[-(x-1)^{2}+4]$,利用二次函數與對數函數的單調性即可得出.
解答 解:(1)∵f(1)=loga2+loga2=2,解得a=2.
∴f(x)=log2(x+1)+log2(3-x),
由$\left\{\begin{array}{l}{x+1>0}\\{3-x<0}\end{array}\right.$,解得-1<x<3,
可得函數f(x)的定義域為:(-1,3).
(2)由(1)可知:f(x)=log2(x+1)+log2(3-x)=log2(x+1)(3-x)=$lo{g}_{2}(-{x}^{2}+2x+3)$=$lo{g}_{2}[-(x-1)^{2}+4]$,
可知:當x=1時,函數f(x)取得最大值,f(1)=log24=2.
由不等式f(x)≤c的恒成立,∴c≥2.
∴實數c的取值范圍是[2,+∞).
點評 本題考查了二次函數與對數函數的單調性、不等式的解法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 20 | B. | 80 | C. | 166 | D. | 180 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com