16.平面直角坐標(biāo)系xOy中,A(2,4),B(-1,2),C,D為動(dòng)點(diǎn),
(1)若C(3,1),求平行四邊形ABCD的兩條對(duì)角線(xiàn)的長(zhǎng)度
(2)若C(a,b),且$\overrightarrow{CD}=(3,1)$,求$\overrightarrow{AC}•\overrightarrow{BD}$取得最小值時(shí)a,b的值.

分析 (1)$\overrightarrow{AC}$=(1,-3),$\overrightarrow{BA}$=(3,2).可得$|\overrightarrow{AC}|$.由平行四邊形的性質(zhì)可得:$\overrightarrow{CD}$=$\overrightarrow{BA}$,可得$\overrightarrow{OD}$=$\overrightarrow{OC}$+$\overrightarrow{BA}$.可得$\overrightarrow{BD}$.
(2)C(a,b),且$\overrightarrow{CD}=(3,1)$,可得$\overrightarrow{OD}$=$\overrightarrow{OC}$+(3,1),可得$\overrightarrow{BD}$=(a+4,b-1).$\overrightarrow{AC}$=(a-2,b-4).利用數(shù)量積運(yùn)算性質(zhì)、二次函數(shù)的單調(diào)性即可得出.

解答 解:(1)$\overrightarrow{AC}$=(1,-3),$\overrightarrow{BA}$=(3,2).
$|\overrightarrow{AC}|$=$\sqrt{{1}^{2}+(-3)^{2}}$=$\sqrt{10}$.
由平行四邊形的性質(zhì)可得:$\overrightarrow{CD}$=$\overrightarrow{BA}$,可得$\overrightarrow{OD}$=$\overrightarrow{OC}$+$\overrightarrow{BA}$=(6,3).
∴$\overrightarrow{BD}$=(7,1),可得:$|\overrightarrow{BD}|$=$\sqrt{{7}^{2}+{1}^{2}}$=5$\sqrt{2}$.
(2)C(a,b),且$\overrightarrow{CD}=(3,1)$,∴$\overrightarrow{OD}$=$\overrightarrow{OC}$+(3,1)=(a+3,b+1).
∴$\overrightarrow{BD}$=(a+4,b-1).
$\overrightarrow{AC}$=(a-2,b-4).
∴$\overrightarrow{AC}•\overrightarrow{BD}$=(a-2)(a+4)+(b-4)(b-1)=a2+2a-8+b2-5b+4
=(a+1)2+$(b-\frac{5}{2})^{2}$-$\frac{45}{4}$≥$-\frac{45}{4}$,當(dāng)且僅當(dāng)a=-1,b=$\frac{5}{2}$時(shí)取等號(hào).

點(diǎn)評(píng) 本題考查了向量坐標(biāo)運(yùn)算性質(zhì)、數(shù)量積運(yùn)算性質(zhì)、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=loga(x+1)+loga(3-x)(a>0且a≠1),且f(1)=2
(1)求a的值及f(x)的定義域;
(2)若不等式f(x)≤c的恒成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.水培植物需要一種植物專(zhuān)用營(yíng)養(yǎng)液.已知每投放a(1≤a≤4且a∈R)個(gè)單位的營(yíng)養(yǎng)液,它在水中釋放的濃度y(克/升)隨著時(shí)間x(天)變化的函數(shù)關(guān)系式近似為y=af(x),其中f(x)=$\left\{\begin{array}{l}{\frac{4+x}{4-x}(0≤x≤2)}\\{\;}\\{5-x(2<x≤5)}\end{array}\right.$,若多次投放,則某一時(shí)刻水中的營(yíng)養(yǎng)液濃度為每次投放的營(yíng)養(yǎng)液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中營(yíng)養(yǎng)液的濃度不低于4(克/升)時(shí),它才能有效.
(1)若只投放一次4個(gè)單位的營(yíng)養(yǎng)液,則有效時(shí)間可能達(dá)幾天?
(2)若先投放2個(gè)單位的營(yíng)養(yǎng)液,3天后投放b個(gè)單位的營(yíng)養(yǎng)液.要使接下來(lái)的2天中,營(yíng)養(yǎng)液能夠持續(xù)有效,試求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某班A,B,C,D,E5個(gè)同學(xué)先坐好,然后玩坐座位的游戲,當(dāng)坐回自己原來(lái)的位置上稱(chēng)為“坐對(duì)”,否則稱(chēng)作“坐錯(cuò)“.
(1)求只有兩個(gè)人“坐對(duì)”的概率;
(2)若每“坐對(duì)”一個(gè)人得1分,“坐錯(cuò)“得-1分,設(shè)5人得分和的絕對(duì)值為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,C=$\frac{π}{3}$,若$\overrightarrow{m}$=(c-$\sqrt{6}$,a-b),$\overrightarrow{n}$=(a-b,c+$\sqrt{6}$),且$\overrightarrow{m}$∥$\overrightarrow{n}$,則△ABC的面積為( 。
A.3B.$\frac{9\sqrt{3}}{2}$C.$\frac{3\sqrt{3}}{2}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=|x-1|+|x-a|(a>0),其最小值為3.
(1)求實(shí)數(shù)a的值;
(2)若關(guān)于x的不等式f(x)+|x|>m2-2m對(duì)于任意的x∈R恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知f(x)=25-x,g(x)=x+t,設(shè)h(x)=max{f(x),g(x)}.若當(dāng)x∈N+時(shí),恒有h(5)≤h(x),則實(shí)數(shù)t的取值范圍是[-5,-3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知R是實(shí)數(shù)集,集合 A={x|22x+1≥16},B={x|(x-1)(x-3)<0,則(∁RA)∩B=( 。
A.(1,2)B.[1,2]C.(1,3)D.(1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=lnx-$\frac{1}{2}$x2+x
(1)設(shè)G(x)=f(x)+lnx,求G(x)的單調(diào)遞增區(qū)間;
(2)證明:k<1時(shí),存在x0>1,當(dāng)x∈(1,x0)時(shí),恒有f(x)-$\frac{1}{2}$>k(x-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案