已知函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的圖象與x軸交于A,B,C三點.若點B的坐標(biāo)為(2,0),且函數(shù)f(x)在區(qū)間[-1,0]和[4,5]上有相同的單調(diào)性,在區(qū)間[0,2]和[4,5]上有相反的單調(diào)性.
(1)求c的值;
(2)求的取值范圍;
(3)求|AC|的最大值和最小值.
【答案】分析:(1)利用函數(shù)f(x)的單調(diào)區(qū)間判斷出x=0是函數(shù)的極值點,利用函數(shù)在極值點處的導(dǎo)數(shù)值為0,列出方程求出c的值.
(2)將c的值代入導(dǎo)函數(shù),令導(dǎo)函數(shù)為0求出方程的兩個根即兩個極值點,據(jù)函數(shù)的單調(diào)性,判斷出根與區(qū)間端點的關(guān)系,列出不等式組求出的范圍.
(3)設(shè)出f(x)的三個零點,寫出f(x)的利用三個根不是的解析式,將x=2代入,利用韋達(dá)定理求出A,C的距離,據(jù)(2)求出|AC|的最值.
解答:解:(1)由條件可知f(x)在區(qū)間[-1,0]和[0,2]上有相反的單調(diào)性,
∴x=0是f(x)的一個極值點,
∴f′(0)=0
而f′(x)=3ax2+2bx+c,
故c=0.
(2)令f′(x)=0,則3ax2+2bx=0,
解得
又f(x)在區(qū)間[0,2]和[4,5]上有相反的單調(diào)性,
解得
(3)設(shè)A(α,0),C(β,0),
則由題意可令f(x)=a(x-α)(x-2)(x-β)=a[x3-(2+α+β)x2+(2α+2β+αβ)x-2αβ]…(2分)
,解得
又∵函數(shù)f(x)的圖象交x軸于B(2,0),
∴f(2)=0即8a+4b+d=0
∴d=-4(b+2a),

從而=

∴當(dāng)時,|AC|max=;當(dāng)時,|AC|min=3.
點評:本題考查極值點處的函數(shù)值為0,極值點左右兩邊的導(dǎo)函數(shù)符號相反;解決二次方程的根的問題常用到韋達(dá)定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案