【題目】設(shè)函數(shù).

1)求曲線在點(diǎn)處的切線方程;

2)若在區(qū)間上恒成立,求a的最小值.

【答案】(Ⅰ) .(Ⅱ) .

【解析】試題分析:(Ⅰ)設(shè)切線的斜率為,利用導(dǎo)數(shù)求解切線斜率,然后求解切線方程;2要使: 在區(qū)間在恒成立,等價(jià)于: 恒成立,利用函數(shù)的導(dǎo)數(shù),通過(guò)①當(dāng)時(shí),利用,說(shuō)明不滿足題意.②當(dāng)時(shí),利用導(dǎo)數(shù)以及單調(diào)性函數(shù)的最小值,求解即可.

試題解析:I)設(shè)切線的斜率為,

因?yàn)?/span>,切點(diǎn)為.

切線方程為,化簡(jiǎn)得: .

II)要使: 在區(qū)間恒成立,

等價(jià)于: 恒成立,

等價(jià)于: 在(0,+∞)恒成立

因?yàn)?/span>

①當(dāng)時(shí), , 不滿足題意

②當(dāng)時(shí),令,則(舍).

所以時(shí) 上單調(diào)遞減;

時(shí), 上單調(diào)遞增;

當(dāng)時(shí)

當(dāng)時(shí),滿足題意

所以,得到的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程.

Ⅱ)當(dāng)時(shí),若曲線上的點(diǎn)都在不等式組所表示的平面區(qū)域內(nèi),試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校隨機(jī)抽取100名學(xué)生高中學(xué)業(yè)水平考試的X科成績(jī),并將成績(jī)分成5組,得到頻率分布表(部分)如下.

(1)直接寫(xiě)出頻率分布表中①②③的值;

(2)如果每組學(xué)生的平均分都是分組端點(diǎn)的平均值(例如,第15個(gè)學(xué)生的平均分是55),估計(jì)該校學(xué)生本次學(xué)業(yè)水平測(cè)試X科的平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),若函數(shù)存在零點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅱ)若恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),且,若動(dòng)點(diǎn)滿足.

1)求出動(dòng)點(diǎn)P的軌跡對(duì)應(yīng)曲線C的標(biāo)準(zhǔn)方程;

2)一條縱截距為2的直線與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過(guò)原點(diǎn),求出直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)若對(duì)定義域內(nèi)的任意,都有成立,求實(shí)數(shù)的值;

(2)若函數(shù)的定義域上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

(3)若,證明對(duì)任意的正整數(shù), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)滿足,其中.

(1)對(duì)于函數(shù),當(dāng)時(shí), ,求實(shí)數(shù)的集合;

(2)時(shí), 的值恒為負(fù)數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列,其前項(xiàng)和為.

(1)若對(duì)任意的, , 組成公差為4的等差數(shù)列,且,求

(2)若數(shù)列是公比為)的等比數(shù)列, 為常數(shù),

求證:數(shù)列為等比數(shù)列的充要條件為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,若有兩個(gè)零點(diǎn),則的取值范圍是 ( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案