把下列方程化為普通方程,并說明它們各表示什么曲線:
(1)
x=4cosϕ
y=4sinϕ
(ϕ為參數(shù));       
(2)ρ2=
12
3cos2θ+4sin2θ
考點(diǎn):簡單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:(1)由
x=4cosϕ
y=4sinϕ
(ϕ為參數(shù))可得x2+y2=16,由此可得曲線的形狀.
(2)原式化簡為,3ρ2cos2θ+4ρ2sin2θ=12,即 3x2+4y2=12,即
x2
4
+
y2
3
=1
,由此可得曲線的形狀.
解答: 解:(1)由
x=4cosϕ
y=4sinϕ
(ϕ為參數(shù))可得x2+y2=16,∴曲線是半徑為4,中心在原點(diǎn)的圓.
(2)原式化簡為,3ρ2cos2θ+4ρ2sin2θ=12,即 3x2+4y2=12,即
x2
4
+
y2
3
=1

∴曲線是長軸在x軸上且為4,短軸為2
3
,中心在原點(diǎn)的橢圓.
點(diǎn)評:本題主要考查把參數(shù)方程、極坐標(biāo)化為直角坐標(biāo)方程的方法,圓和橢圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人進(jìn)行兵乓球比賽,在每一局的比賽中,甲獲勝的概率為p(0<p<1).
(1)如果甲,乙兩人共比賽4局,甲恰好負(fù)2局的概率不大于其恰好勝3局的概率,試求p的取值范圍.
(2)若p=
1
3
,當(dāng)采用3局2勝制的比賽規(guī)則時,求甲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題r(x):?x∈R,x2-2x+1-
2
>m;s(x):?x∈R,x2+mx+1>0,如果r(x)與s(x)中有且僅有一個是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C頂點(diǎn)在原點(diǎn),焦點(diǎn)F在x正半軸上,拋物線C上點(diǎn)(1,t)到其準(zhǔn)線距離為
5
4

(Ⅰ)求拋物線C方程.
(Ⅱ)如圖:若斜率為1的直線l交拋物線C于不同兩點(diǎn)P,Q,在x軸上有兩點(diǎn)M,N,且PF=MF,QF=FN,直線MP,NQ交于點(diǎn)T,連結(jié)PF,QF,TF,記 S1=S△TFP,S2=S△QFT,S3=S△PQT
(1)證明:直線PM與拋物線C相切.
(2)求
S1S2
S32
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2sinθ-6
3cosθ-6
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={x|x≥-4},集合A={x|-1<x≤3},B={x|0≤x<5},求A∩B,(∁UA)∪B,A∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|(x-a)(x-1)<0},B={x|0<x<4},且A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知log23=m,log37=n,用m,n表示log1256.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3
2x-2
的值域是
 

查看答案和解析>>

同步練習(xí)冊答案