8.若二項(xiàng)式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展開(kāi)式的常數(shù)項(xiàng)為160,則a=-2.

分析 在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng),再根據(jù)常數(shù)項(xiàng)等于160求得實(shí)數(shù)a的值.

解答 解:二項(xiàng)式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展開(kāi)式的通項(xiàng)公式為Tr+1=${C}_{6}^{r}$•(-1)r•a6-r•x3-r,令3-r=0,求得r=3,
可得展開(kāi)式的常數(shù)項(xiàng)為-${C}_{6}^{3}$•a3=160,∴a=-2,
故答案為:-2.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知命題p:對(duì)于任意x>1,總有x+$\frac{1}{x-1}$≥3,q:“x>1”是“x>2”的充分不必要條件;則下列命題為真命題的是( 。
A.q∧qB.¬p∧¬qC.¬p∧qD.p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.將函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的圖象向右平移$\frac{π}{4}$個(gè)單位后得到g(x)的圖象,已知g(x)的部分圖象如圖所示,該圖象與y軸相交于點(diǎn)F(0,1),與x軸相交于點(diǎn)P,Q,點(diǎn)M為最高點(diǎn),且△MPQ的面積為$\frac{π}{2}$.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,g(A)=1,且a=$\sqrt{5}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(Ⅰ)已知直線l經(jīng)過(guò)點(diǎn)P(-3,2)且在x軸上的截距等于在y軸上截距的2倍,求l的方程;
(Ⅱ)已知圓C經(jīng)過(guò)點(diǎn)A(2,-2)和點(diǎn)B(1,1),且圓心在直線x-y+1=0上,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,已知直線MA切圓O于點(diǎn)A,割線MCB交圓O于點(diǎn)C,B兩點(diǎn),∠BMA的角平分線分別與AC,AB交于E,D兩點(diǎn).
(1)證明:AE=AD;
(2)若AB=5,AE=2,求$\frac{MA}{MC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)=x-3+log3x的零點(diǎn)所在區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若直線3x+(m+1)y-(m-7)=0與直線mx+2y+3m=0平行,則m的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.當(dāng)α∈(0,$\frac{π}{2}$)時(shí),求證:sinα<α<tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,是函數(shù)y=f(x)的導(dǎo)函數(shù)f′(x)的圖象,則下面判斷正確的是( 。
A.在區(qū)間(-3,-2)內(nèi)f(x)是增函數(shù)B.在(1,3)內(nèi)f(x)是增函數(shù)
C.當(dāng)x=4時(shí),f(x)取極大值D.當(dāng)x=2時(shí),f(x)取極大值

查看答案和解析>>

同步練習(xí)冊(cè)答案