(本題8分)
已知直線(為參數(shù)),圓(為參數(shù)).
(Ⅰ)當時,試判斷直線與圓的位置關系;
(Ⅱ)若直線與圓截得的弦長為1,求直線的普通方程.
科目:高中數(shù)學 來源: 題型:解答題
(本題共9分)如圖,在△ACB中,∠ACB = 90°,AC = 4,BC = 2,點P為線段CA(不包括端點)上的一個動點,以為圓心,1為半徑作.
(1)連結,若,試判斷與直線AB的位置關系,并說明理由;
(2)當線段PC等于多少時,與直線AB相切?
(3)當與直線AB相交時,寫出線段PC的取值范圍。
(第(3)問直接給出結果,不需要解題過程)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓C:x2+y2=r2(r>0)經過點(1,).
(1)求圓C的方程;
(2)是否存在經過點(-1,1)的直線l,它與圓C相交于A,B兩個不同點,且滿足=+(O為坐標原點)關系的點M也在圓C上?如果存在,求出直線l的方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
已知F2、F1是雙曲線-=1(a>0,b>0)的上、下焦點,點F2關于漸近線的對稱點恰好
落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線的離心率為( )
A.3 | B. | C.2 | D. |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com