(本題8分)
已知直線(為參數(shù)),圓(為參數(shù)).
(Ⅰ)當時,試判斷直線與圓的位置關系;
(Ⅱ)若直線與圓截得的弦長為1,求直線的普通方程.

解:(Ⅰ)當時,直線的普通方程為,圓的普通方程為,
圓心(0,0)到直線的距離. 所以直線與圓相切.
(Ⅱ)若直線與圓截得的弦長為1,則圓心(0,0)到直線的距離,
直線的普通方程為,
,
所以,直線的普通方程為

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知圓C1與圓C2相交于A、B兩點,
(1)求公共弦AB所在的直線方程;
(2)求圓心在直線上,且經過A、B兩點的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題共9分)如圖,在△ACB中,∠ACB = 90°,AC = 4,BC = 2,點P為線段CA(不包括端點)上的一個動點,以為圓心,1為半徑作
(1)連結,若,試判斷與直線AB的位置關系,并說明理由;
(2)當線段PC等于多少時,與直線AB相切?
(3)當與直線AB相交時,寫出線段PC的取值范圍。
(第(3)問直接給出結果,不需要解題過程)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C:x2+y2=r2(r>0)經過點(1,).
(1)求圓C的方程;
(2)是否存在經過點(-1,1)的直線l,它與圓C相交于A,B兩個不同點,且滿足=+(O為坐標原點)關系的點M也在圓C上?如果存在,求出直線l的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C經過A(1,),B(5,3),并且圓的面積被直線平分.求圓C的方程;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設雙曲線的一條漸近線與拋物線y=x2+1只有一個公共點,則雙曲線的離心率為(  )

A. B.5 C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知F2、F1是雙曲線-=1(a>0,b>0)的上、下焦點,點F2關于漸近線的對稱點恰好
落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線的離心率為(  )

A.3B.C.2D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若拋物線的焦點為,則的值為(    )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

.(5分)直線與曲線有且只有一個交點,則的取值范圍是(   )

A. B. C. D.

查看答案和解析>>

同步練習冊答案