【題目】已知函數(shù)的最大值為2.
(Ⅰ)求函數(shù)在上的單調(diào)遞減區(qū)間;
(Ⅱ)中,,角所對的邊分別是,且,求的面積.
【答案】(Ⅰ)(Ⅱ)
【解析】
試題(1)根據(jù)輔助角公式,函數(shù)的最大值為令其為2,即可求得m,利用正弦函數(shù)的單調(diào)性可求得此函數(shù)的遞減區(qū)間,找到[0,π]上的單調(diào)遞減區(qū)間即可;(2)本小題關(guān)鍵是求得邊a與b的乘積,利用正弦定理,把化為邊a與b的關(guān)系,另一方面已知C=60°,c=3,由余弦定理,可得邊a與b的另一關(guān)系,兩式聯(lián)立解得ab(當(dāng)然也可解得a與b的單個(gè)值,但計(jì)算量大),利用可求得面積.
試題解析:(1)由題意,f(x)的最大值為所以而m>0,于是m=,f(x)=2sin(x+).由正弦函數(shù)的單調(diào)性及周期性可得x滿足即所以f(x)在[0,π]上的單調(diào)遞減區(qū)間為
(2)設(shè)△ABC的外接圓半徑為R,由題意,得化簡得sin A+sin B=2sin Asin B.由正弦定理,得① 由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9="0." ②
將①式代入②,得2(ab)2-3ab-9=0,解得ab=3或(舍去),故
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (是自然對數(shù)的底數(shù))
(1)求證:
(2)若不等式在上恒成立,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下有關(guān)命題的說法錯(cuò)誤的是( )
A.命題“若,則”的逆否命題為“若,則”
B.“”是“”成立的必要不充分條件
C.對于命題,使得,則,均有
D.若為真命題,則與至少有一個(gè)為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn) A(a , b),拋物線C : (a ≠0 , b ≠0 , a ≠2p).過點(diǎn) A 作直線l ,交拋物線 C 于點(diǎn)P 、Q .如果以線段 PQ 為直徑的圓過拋物線C 的頂點(diǎn),求直線 l 的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
(1)若展開式中第5項(xiàng),第6項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開式中二項(xiàng)式系數(shù)最大項(xiàng)
的系數(shù);
(2)若展開式前三項(xiàng)的二項(xiàng)式系數(shù)和等于79,求展開式中系數(shù)最大的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為10000,12000,15000,其成本構(gòu)成如下圖所示,則關(guān)于這三家企業(yè)下列說法錯(cuò)誤的是( )
A.成本最大的企業(yè)是丙企業(yè)B.費(fèi)用支出最高的企業(yè)是丙企業(yè)
C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題實(shí)數(shù)滿足(其中),命題方程表示雙曲線.
(I)若,且為真命題,求實(shí)數(shù)的取值范圍;
(Ⅱ)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年,我國繼續(xù)實(shí)行個(gè)人所得稅專項(xiàng)附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息、住房租金、贍養(yǎng)老人等六項(xiàng)專項(xiàng)附加扣除.某單位老、中、青員工分別有人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取50人調(diào)查專項(xiàng)附加扣除的享受情況.
(Ⅰ)應(yīng)從老、中、青員工中分別抽取多少人?
(Ⅱ)抽取的50人中,享受至少兩項(xiàng)專項(xiàng)附加扣除的員工有5人,分別記為.享受情況如下表,其中“○”表示享受,“×”表示不享受.現(xiàn)從這5人中隨機(jī)抽取2人接受采訪.
員工 項(xiàng)目 | A | B | C | D | E |
子女教育 | ○ | ○ | × | ○ | × |
繼續(xù)教育 | × | × | ○ | × | ○ |
大病醫(yī)療 | × | ○ | × | ○ | × |
住房貸款利息 | ○ | ○ | × | × | ○ |
住房租金 | × | × | ○ | ○ | × |
贍養(yǎng)老人 | ○ | ○ | × | × | × |
(1)試用所給字母列舉出所有可能的抽取結(jié)果;
(2)設(shè)為事件“抽取的2人享受的專項(xiàng)附加扣除全都不相同”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】物聯(lián)網(wǎng)興起、發(fā)展、完善極大的方便了市民生活需求.某市統(tǒng)計(jì)局隨機(jī)地調(diào)查了該市某社區(qū)的100名市民網(wǎng)上購菜狀況,其數(shù)據(jù)如下:
每周網(wǎng)上買菜次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 | 總計(jì) |
男 | 10 | 8 | 7 | 3 | 2 | 15 | 45 |
女 | 5 | 4 | 6 | 4 | 6 | 30 | 55 |
總計(jì) | 15 | 12 | 13 | 7 | 8 | 45 | 100 |
(1)把每周網(wǎng)上買菜次數(shù)超過3次的用戶稱為“網(wǎng)上買菜熱愛者”,能否在犯錯(cuò)誤概率不超過0.005的前提下,認(rèn)為是否為“網(wǎng)上買菜熱愛者”與性別有關(guān)?
(2)把每周使用移動(dòng)支付6次及6次以上的用戶稱為“網(wǎng)上買菜達(dá)人”,視頻率為概率,在我市所有“網(wǎng)上買菜達(dá)人”中,隨機(jī)抽取4名用戶求既有男“網(wǎng)上買菜達(dá)人”又有女“網(wǎng)上買菜達(dá)人”的概率.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com