A. | [$\frac{π}{12}$,$\frac{7π}{12}$] | B. | [-$\frac{5π}{12}$,$\frac{π}{12}$] | C. | [-$\frac{π}{3}$,$\frac{2π}{3}$] | D. | [-$\frac{π}{6}$,$\frac{5π}{6}$] |
分析 利用兩角和與差和輔助角公式化簡(jiǎn),結(jié)合三角函數(shù)的圖象及性質(zhì)求解即可.
解答 解:函數(shù)f(x)=sin(2x+$\frac{π}{6}$)+cos2x,
化簡(jiǎn)可得:f(x)=$\frac{\sqrt{3}}{2}$sin2x+$\frac{3}{2}$cos2x=$\sqrt{3}$sin(2x+$\frac{π}{3}$),
由$\frac{π}{2}+2kπ≤2x+\frac{π}{3}≤\frac{3π}{2}+2kπ$(k∈Z).
解得:$\frac{π}{12}+kπ$≤x≤$\frac{7π}{12}+kπ$(k∈Z).
則f(x)的單調(diào)遞減區(qū)間為[$\frac{π}{12}+kπ$,$\frac{7π}{12}+kπ$](k∈Z)
∴f(x)的一個(gè)單調(diào)遞減區(qū)間為[$\frac{π}{12}$,$\frac{7π}{12}$].
故選:A.
點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\left\{{x|0<x<\frac{5}{2}}\right\}$ | B. | $\left\{{x|x<-\frac{3}{2}\;,\;\;或0≤x<\frac{5}{2}}\right\}$ | ||
C. | $\left\{{x|-\frac{3}{2}<x<0\;,\;\;或0≤x<\frac{5}{2}}\right\}$ | D. | $\left\{{x|-\frac{3}{2}<x<0}\right\}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | M?N | B. | N?M | C. | M⊆N | D. | M∩N=∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,3) | B. | (2,3) | C. | (2,3] | D. | [-1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | i | D. | -i |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com