【題目】已知函數(shù).

1)判斷函數(shù)的奇偶性,并加以證明;

2)用定義證明函數(shù)在區(qū)間上為增函數(shù);

3)求函數(shù)在區(qū)間上的最大值和最小值.

【答案】1)奇函數(shù),證明見解析 2)證明見解析 3)最大值為,最小值為

【解析】

1)判斷出函數(shù)是奇函數(shù)再證明,確定函數(shù)定義域關于原點對稱,利用奇函數(shù)的定義可判斷;

2)定義法證明函數(shù)上是增函數(shù),證明按照取值、作差、變形定號、下結論步驟即可;

3)根據(jù)(2)的結論得函數(shù)在區(qū)間上的單調性,再求出最大值、最小值.

解:(1)函數(shù)是奇函數(shù).

定義域:,,,定義域關于原點對稱,

函數(shù)是奇函數(shù).

2)證明:設任意實數(shù),,且

,且,,

,,,

,即

函數(shù)在區(qū)間上為增函數(shù).

3,

函數(shù)在區(qū)間,上也為增函數(shù).

,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:關于x的方程x2﹣ax+4=0有實根;命題q:關于x的函數(shù)y=2x2+ax+4[3,+∞)上是增函數(shù),若“pq”是真命題,“pq”是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的內角所對的邊為,則下列命題正確的是_____

①若,則 ②若,

③若,則; ④若,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在定義域內單調遞增,求的取值范圍;

(2)若且關于的方程上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,BCDC,AEDC,M,N分別是AD,BE的中點,將三角形ADE沿AE折起,則下列說法正確的是________(填序號).

①不論D折至何位置(不在平面ABC內),都有MN∥平面DEC;②不論D折至何位置,都有MNAE;③不論D折至何位置(不在平面ABC內),都有MNAB;④在折起過程中,一定存在某個位置,使ECAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在用二次法求方程3x+3x-8=0在(1,2)內近似根的過程中,已經(jīng)得到f1)<0,f1.5)>0,f1.25)<0,則方程的根落在區(qū)間(  )

A. B. C. D. 不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為,(為參數(shù)),直線的參數(shù)方程為為參數(shù),為實數(shù)),直線與曲線交于 兩點.

(1)若,求的長度;

(2)當面積取得最大值時(為原點),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知、滿足條件求:

(1)的最大值和最小值;

(2)的最大值和最小值;

(3)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橢圓 的離心率為,過橢圓右焦點作兩條互相垂直的弦.當直線的斜率為時,.

(1)求橢圓的方程;

(2)求由,,,四點構成的四邊形面積的取值范圍.

查看答案和解析>>

同步練習冊答案