【題目】如圖,有一直角墻角,兩邊的長度足夠長,若P處有一棵樹與兩墻的距離分別是4m和am(0<a<12),不考慮樹的粗細(xì).現(xiàn)用16m長的籬笆,借助墻角圍成一個矩形花圃ABCD.設(shè)此矩形花圃的最大面積為u,若將這棵樹圍在矩形花圃內(nèi),則函數(shù)u=f(a)(單位m2)的圖象大致是( )
A.
B.
C.
D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求曲線在點處的切線方程;
(2)若函數(shù)有兩個極值點,且.
①求的取值范圍;
②求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:,直線:.
(1)若直線被圓C截得的弦長為 ,求實數(shù)的值;
(2)當(dāng)t =1時,由直線上的動點P引圓C的兩條切線,若切點分別為A,B,則直線AB是否恒過一個定點?若存在,求出該定點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了分析本校高中生的性別與是否喜歡數(shù)學(xué)之間的關(guān)系,在高中生中隨機地抽取了90名學(xué)生調(diào)查,得到了如下列聯(lián)表:
喜歡數(shù)學(xué) | 不喜歡數(shù)學(xué) | 總計 | |
男 | 30 | ① | 45 |
女 | ② | 25 | 45 |
總計 | ③ | ④ | 90 |
(1)求①②③④處分別對應(yīng)的值;
(2)能有多大把握認(rèn)為“高中生的性別與喜歡數(shù)學(xué)”有關(guān)?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記表示大于的整數(shù)的十位數(shù),例如,.已知,,都是大于的互不相等的整數(shù),現(xiàn)有如下個命題:
①若,則;②,且;
③若是質(zhì)數(shù),則也是質(zhì)數(shù);④若,,成等差數(shù)列,則,,可能成等比數(shù)列.
其中所有的真命題為( )
A. ② B. ③④ C. ①②④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,,為等邊三角形,是線段上的一點,且平面.
(1)求證:為的中點;
(2)若為的中點,連接,,,,平面平面,,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知從圓C:(x+1)2+(y﹣2)2=2外一點P(x1 , y1)向該圓引一條切線,切點為M,O為坐標(biāo)原點,且有|PM|=|PO|,則當(dāng)|PM|取最小值時點P的坐標(biāo)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB的中點為O,且OA=1,點D在AB的延長線上,且 .固定邊AB,在平面內(nèi)移動頂點C,使得圓M與邊BC,邊AC的延長線相切,并始終與AB的延長線相切于點D,記頂點C的軌跡為曲線Γ.以AB所在直線為x軸,O為坐標(biāo)原點如圖所示建立平面直角坐標(biāo)系.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)設(shè)動直線l交曲線Γ于E、F兩點,且以EF為直徑的圓經(jīng)過點O,求△OEF面積的取值范圍.
查看答案和解析>>
科目:
來源: 題型:【題目】為了研究某班學(xué)生的腳長x(單位:厘米)和身高y(單位:厘米)的關(guān)系,從該班隨機抽取10名學(xué)生,根據(jù)測量數(shù)據(jù)的散點圖可以看出y與x之間有線性相關(guān)關(guān)系,設(shè)其回歸直線方程為 = x+ ,已知 xi=225, yi=1600, =4,該班某學(xué)生的腳長為24,據(jù)此估計其身高為( 。
A.160
B.163
C.166
D.170
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com