精英家教網 > 高中數學 > 題目詳情

在平面直角坐標系中,已知點是動點,且的三邊所在直線的斜率滿足
(1)求點的軌跡的方程;
(2)若是軌跡上異于點的一個點,且,直線交于點,問:是否存在點,使得的面積滿足?若存在,求出點的坐標;若不存在,說明理由.

(1)),(2)

解析試題分析:(1)點的軌跡的方程,就是找出點橫坐標與縱坐標的關系式,而條件中只有點為未知,可直接利用斜率公式化簡,得點的軌跡的方程為,求出軌跡的方程后需結合變形過程及觀察圖像進行去雜,本題中分母不為零是限制條件,(2)本題難點在于對條件的轉化,首先條件說明的是,其次條件揭示的是,兩者結合轉化為條件,到此原題就轉化為:已知斜率為的過點直線被拋物線截得弦長為,求點的坐標.
試題解析:

(1)設點為所求軌跡上的任意一點,則由得,
,整理得軌跡的方程為).  3分
(2):學設可知直線,
,故,即,   5分
直線OP方程為: ①;直線QA的斜率為:
∴直線QA方程為:,即 ②
聯(lián)立①②,得,∴點M的橫坐標為定值.       8分
,得到,因為,所以
,得,∴的坐標為
∴存在點P滿足,的坐標為. 10分
考點:軌跡方程,直線與拋物線位置關系

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設橢圓M=1(a>)的右焦點為F1,直線lxx軸交于點A,若1=2 (其中O為坐標原點).
(1)求橢圓M的方程;
(2)設P是橢圓M上的任意一點,EF為圓Nx2+(y-2)2=1的任意一條直徑(E,F為直徑的兩個端點),求·的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設橢圓的方程為 ,斜率為1的直線不經過原點,而且與橢圓相交于兩點,為線段的中點.
(1)問:直線能否垂直?若能,求之間滿足的關系式;若不能,說明理由;
(2)已知的中點,且點在橢圓上.若,求之間滿足的關系式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的離心率為,直線與圓相切.
(1)求橢圓的方程;
(2)設直線與橢圓的交點為,求弦長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(1)已知點,過點的直線與過點的直線相交于點,設直線的斜率為,直線的斜率為,如果,求點的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,的外角平分線與邊的延長線相交于點,則.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,已知點,點在直線上運動,過點垂直的直線和線段的垂直平分線相交于點
(1)求動點的軌跡的方程;
(2)過(1)中的軌跡上的定點作兩條直線分別與軌跡相交于,兩點.試探究:當直線的斜率存在且傾斜角互補時,直線的斜率是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓,直線交橢圓兩點.
(Ⅰ)求橢圓的焦點坐標及長軸長;
(Ⅱ)求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的左、右焦點分別為,且,長軸的一個端點與短軸兩個端點組成等邊三角形的三個頂點.
(1)求橢圓方程;
(2)設橢圓與直線相交于不同的兩點M、N,又點,當時,求實數m的取值范圍,

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知離心率的橢圓一個焦點為.
(1)求橢圓的方程;
(2) 若斜率為1的直線交橢圓兩點,且,求直線方程.

查看答案和解析>>

同步練習冊答案