【題目】已知坐標(biāo)平面上點與兩個定點 的距離之比等于5.

(1)求點的軌跡方程,并說明軌跡是什么圖形;

(2)記(1)中的軌跡為,過點的直線所截得的線段的長為8,求直線的方程.

【答案】1);(2),或

【解析】試題分析:(1)運(yùn)用兩點間距離公式建立方程進(jìn)行化簡;(2)借助直線與圓的位置關(guān)系,運(yùn)用圓心距、半徑、弦長之間的關(guān)系建立方程待定直線的斜率,再用直線的點斜式方程分析求解:

試題解析: (1)由題意,得,即化簡得,

的軌跡方程是軌跡是以為圓心,以為半徑的圓

(2)當(dāng)直線的斜率不存在時, ,此時所截得的線段的長為,

符合題意當(dāng)直線的斜率存在時,設(shè)的方程為,即,圓心到的距離,

由題意,得,解得,∴直線的方程為

.

綜上,直線的方程為,或.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在等腰梯形中, .把沿折起,使得,得到四棱錐.如圖2所示.

(1)求證:面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的函數(shù).

(1)當(dāng)時,求函數(shù)在點處的切線方程;

(2)設(shè),討論函數(shù)的單調(diào)區(qū)間;

(3)若函數(shù)沒有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線上的點到點的距離比它到直線的距離小2.

(1)求曲線的方程;

(2)過點且斜率為的直線交曲線兩點,若,當(dāng)時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點, 為圓上任意一點,線段上一點滿足,直線上一點,滿足.

1)當(dāng)在圓周上運(yùn)動時,求點的軌跡的方程;

(2)若直線與曲線交于兩點,且以為直徑的圓過原點,求證:直線不可能相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓中心在坐標(biāo)原點,焦點在坐標(biāo)軸上,且經(jīng)過三點.

(1)求橢圓的方程;

(2)在直線上任取一點,連接,分別與橢圓交于兩點,判斷直線是否過定點?若是,求出該定點.若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為1的正方體中,點, 分別是側(cè)面與底面的中心,則下列命題中錯誤的個數(shù)為( )

平面; ②異面直線所成角為

與平面垂直; ④

A. 0 B. 1 C. 2 D. 3

【答案】A

【解析】對于①,∵DFDF平面, 平面平面,正確;

對于②,∵DF,異面直線所成角即異面直線所成角,為等邊三角形,故異面直線所成角為,正確;

對于③,∵ ⊥CD,且CD=D平面,即平面正確;

對于④,,正確,

故選:A

型】單選題
結(jié)束】
8

【題目】已知函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,橢圓的長軸長是短軸長的2倍,是橢圓的右焦點,直線的斜率為,為坐標(biāo)原點.

(1)求橢圓的方程;

(2)設(shè)過點的動直線與橢圓相交于兩點.當(dāng)的面積最大時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的定義域為[﹣1,1],圖象如圖1所示;函數(shù)g(x)的定義域為[﹣2,2],圖象如圖2所示,設(shè)函數(shù)f(g(x))有m個零點,函數(shù)g(f(x))有n個零點,則m+n等于( 。

A. 6 B. 10 C. 8 D. 1

查看答案和解析>>

同步練習(xí)冊答案