【題目】已知定點, 為圓上任意一點,線段上一點滿足,直線上一點,滿足.
(1)當在圓周上運動時,求點的軌跡的方程;
(2)若直線與曲線交于兩點,且以為直徑的圓過原點,求證:直線與不可能相切.
【答案】(1);(2)見解析.
【解析】試題分析:(1)由,直線上一點,滿足,可得 為線段 的垂直平分線,求出圓的圓心坐標為,半徑為,得到,利用橢圓的定義,求解點的軌跡的方程即可;(2)當直線的斜率存在時,設直線為,聯(lián)立直線與橢圓的方程,得,消去,利用判別式以及韋達定理,結(jié)合,可證明直線與一定相交,從而可得結(jié)論.
試題解析:(Ⅰ)由,直線上一點,滿足,可得 時線段 的垂直平分線,求出圓的圓心坐標為,半徑為,得到,點M的軌跡是以N、Q為焦點,長軸長為的橢圓,即2a=,2c=,∴b=.
所以點M的軌跡C的方程為:.
(Ⅱ)當直線的斜率存在時,設直線l為y=kx+m,A(x1,y1),B(x2,y2),聯(lián)立直線與橢圓的方程,
得消去y并整理得(1+2k2)x2+4kmx+2m2-6=0.
因為直線與橢圓有兩個不同的交點,所以
△=16k2m2-4(1+2k2)(2m2-6)>0,化簡得:m2<6k2+3①
由韋達定理得:.
∴.
∵,∴x1x2+y1y2=0,即,
整理得m2=2k2+2滿足①式,∴d=,即原點到直線l為的距離是,
∴直線l與圓x2+y2=4相交.
當直線的斜率不存在時,直線為x=m,與橢圓C交點為A(m,),B(m,)
∵,∴.
此時直線為x=,顯然也與圓x2+y2=4相交.
綜上,直線l與定圓E:x2+y2=4不可能相切.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體的棱長為 1, 為的中點, 為線段上的動點,過點A、P、Q的平面截該正方體所得的截面記為.則下列命題正確的是__________(寫出所有正確命題的編號).
①當時, 為四邊形;②當時, 為等腰梯形;③當時, 為六邊形;④當時, 的面積為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學習熱情,某校開展《中國漢字聽寫大會》的活動.為響應學校號召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績畫出莖葉圖,如圖所示(把頻率當作概率).
(1)求甲、乙兩人成績的平均數(shù)和中位數(shù);
(2)現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計學的角度,你認為派哪位學生參加比較合適?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點,F在棱AC上,且AF=3FC
(1)求三棱錐D-ABC的體積
(2)求證:平面DAC⊥平面DEF;
(3)若M為DB中點,N在棱AC上,且CN=CA,求證:MN∥平面DEF
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的一個焦點與上、下頂點構(gòu)成直角三角形,以橢圓的長軸長為直徑的圓與直線相切.
(1)求橢圓的標準方程;
(2)設過橢圓右焦點且不平行于軸的動直線與橢圓相交于兩點,探究在軸上是否存在定點,使得為定值?若存在,試求出定值和點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知坐標平面上點與兩個定點, 的距離之比等于5.
(1)求點的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為,過點的直線被所截得的線段的長為8,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 為的中點,如圖 2.
(1)求證: 平面;
(2)求證: 平面;
(3)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】共享單車進駐城市,綠色出行引領(lǐng)時尚.某市有統(tǒng)計數(shù)據(jù)顯示,2017年該市共享單車用戶年齡登記分布如圖1所示,一周內(nèi)市民使用單車的頻率分布扇形圖如圖2所示.若將共享單車用戶按照年齡分為“年輕人”(20歲至39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,將一周內(nèi)使用的次數(shù)為6次或6次以上的稱為“經(jīng)常使用單車用戶”,使用次數(shù)為5次或不足5次的稱為“不常使用單車用戶”.已知在“經(jīng)常使用單車用戶”中有是“年輕人”.
(1)現(xiàn)對該市市民進行“經(jīng)常使用共享單車與年齡關(guān)系”的調(diào)查,采用隨機抽樣的方法,抽取一個容量為200的樣本,請你根據(jù)圖表中的數(shù)據(jù),補全下列列聯(lián)表,并根據(jù)列聯(lián)表的獨立性檢驗,判斷能有多大把握可以認為經(jīng)常使用共享單車與年齡有關(guān)?
(2)將頻率視為概率,若從該市市民中隨機任取3人,設其中經(jīng)常使用共享單車的“非年輕人”人數(shù)為隨機變量,求的分布與期望.
(參考數(shù)據(jù):獨立性檢驗界值表,其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com