分析 (1)利用直線系方程求出直線所過定點,判斷定點在圓C內(nèi)看到直線l與圓C相交;
(2)設(shè)P(x,y),由|PD|,|PO|,|PE|成等比數(shù)列,得到x2-y2=2,寫出$\overrightarrow{PD}$•$\overrightarrow{PE}$=(-2-x,-y)•(2-x,-y)=x2-4+y2=2(y2-1),結(jié)合點P在圓C內(nèi),得到關(guān)于y的不等式,求解不等式得到y(tǒng)的范圍,進(jìn)一步求得$\overrightarrow{PD}$•$\overrightarrow{PE}$的取值范圍.
解答 (1)證明:由mx-y+1-m=0,得y=(m-1)x+1,
∴直線l必過定點G(1,1),
又12+(1-1)2<5,∴點G在圓C內(nèi)部,
∴直線l與圓C相交;
(2)解:設(shè)P(x,y),由|PD|,|PO|,|PE|成等比數(shù)列,
得$\sqrt{(x+2)^{2}+{y}^{2}}•\sqrt{(x-2)^{2}+{y}^{2}}={x}^{2}+{y}^{2}$,即x2-y2=2,
∴$\overrightarrow{PD}$•$\overrightarrow{PE}$=(-2-x,-y)•(2-x,-y)=x2-4+y2=2(y2-1).
由于點P在圓C內(nèi),則$\left\{\begin{array}{l}{{x}^{2}+(y-1)^{2}<5}\\{{x}^{2}-{y}^{2}=2}\end{array}\right.$.
由此得y2-y-1<0,解得:$\frac{1-\sqrt{5}}{2}<y<\frac{1+\sqrt{5}}{2}$.
故$0≤{y}^{2}<(\frac{1+\sqrt{5}}{2})^{2}=\frac{3+\sqrt{5}}{2}$.
∴$2({y}^{2}-1)∈[-2,1+\sqrt{5})$.
∴$\overrightarrow{PD}$•$\overrightarrow{PE}$的取值范圍是$[-2,1+\sqrt{5})$.
點評 本題主要考查直線和圓的位置關(guān)系的判斷,考查向量數(shù)量積的坐標(biāo)運算,考查推理論證能力及運算能力,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{1}{3}$ | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(理)試卷(解析版) 題型:解答題
根據(jù)統(tǒng)計資料,某工藝品廠的日產(chǎn)量最多不超過20件根據(jù)統(tǒng)計資料,每日產(chǎn)品廢品率與日產(chǎn)量 (件)之間近似地滿足關(guān)系式(日產(chǎn)品廢品率=×100%) .
已知每生產(chǎn)一件正品可贏利2千元,而生產(chǎn)一件廢品則虧損1千元.(該車間的日利潤日正品贏利額日廢品虧損額)
(1)將該車間日利潤(千元)表示為日產(chǎn)量(件)的函數(shù);
(2)當(dāng)該車間的日產(chǎn)量為多少件時,日利潤最大?最大日利潤是幾千元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年廣東清遠(yuǎn)三中高一上學(xué)期月考一數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,.
(1)求時的解析式;
(2)問是否存在正數(shù),當(dāng)時,,且的值域為?若存
在,求出所有的的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 增函數(shù) | B. | 減函數(shù) | ||
C. | 既是增函數(shù)又是偶函數(shù) | D. | 既是減函數(shù)又是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年廣東清遠(yuǎn)三中高一上學(xué)期月考一數(shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù)的定義域為,則函數(shù)的定義域為______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{9}{4}$,+∞) | B. | [-$\frac{9}{4}$,0] | C. | [-2,0] | D. | [2,4] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com