11.已知函數(shù)y=$\frac{sinx}{x}$在(0,π)上是( 。
A.增函數(shù)B.減函數(shù)
C.既是增函數(shù)又是偶函數(shù)D.既是減函數(shù)又是偶函數(shù)

分析 求出函數(shù)的導數(shù),根據(jù)導函數(shù)的符號,求出函數(shù)的單調性即可.

解答 解:y′=$\frac{xcosx-sinx}{{x}^{2}}$,
令f(x)=xcosx-sinx,f′(x)=-xsinx<0,
∴y′=$\frac{xcosx-sinx}{{x}^{2}}$在(0,+∞)遞減,
∴$\underset{lim}{x→0}$$\frac{xcosx-sinx}{{x}^{2}}$=$\underset{lim}{x→0}$(-$\frac{1}{2}$sinx)=0,
∴y′=$\frac{xcosx-sinx}{{x}^{2}}$<0在(0,π)恒成立,
∴函數(shù)y=$\frac{sinx}{x}$在(0,π)上是減函數(shù),
而定義域是(0,π),不具有對稱性,
故選:B.

點評 本題考查了函數(shù)的單調性問題,考查導數(shù)的應用,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.數(shù)列{an}中,其通項公式an=(a-2)•2n-1+2•3n-1,若{an}為遞增數(shù)列,則a的取值范圍是( 。
A.(-3,+∞)B.(-2,+∞)C.(2,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:2015-2016學年江蘇泰興中學高二上學期期末數(shù)學(理)試卷(解析版) 題型:填空題

若當時,不等式恒成立,則實數(shù)的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年廣東清遠三中高一上學期月考一數(shù)學試卷(解析版) 題型:解答題

已知集合

(1)若 ,求的值;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知直線l的方程為mx-y+1-m=0,圓C的方程為x2+(y-1)2=5.
(1)證明:直線l與圓C相交;
(2)已知D(-2,0),E(2,0)為x軸上的兩點,若圓C內的動點P使|PD|,|PO|,|PE|成等比數(shù)列,求$\overrightarrow{PD}$•$\overrightarrow{PE}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.德國著名數(shù)學家狄利克雷在數(shù)學領域成就顯著,以其名命名的函數(shù)f(x)=$\left\{\begin{array}{l}{1,x∈Q}\\{0,x∈{∁}_{R}Q}\end{array}\right.$被稱為狄利克雷函數(shù),其中R為實數(shù)集,Q為有理數(shù)集,則關于函數(shù)f(x)有如下四個命題:
①函數(shù)f(x)是偶函數(shù);
②f(f(x))=0;
③任取一個不為零的有理數(shù)T,f(x+T)=f(x)對任意的x∈R恒成立;
④不存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),
使得△ABC 為等邊三角形.其中為真命題的是①③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知復數(shù)z=-3i+$\frac{2}{1+i}$,則z為( 。
A.1-4iB.1+4iC.-1+4iD.-1-4i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.(1)已知函數(shù)y=f(x)的定義域為[-1,2],求函數(shù)y=f(1-x2)的定義域.
(2)已知函數(shù)y=f(2x-3)的定義域為(-2,1],求函數(shù)y=f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設關于x,y的不等式組$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+m≤0}\\{y-m≥0}\end{array}}\right.$表示的平面區(qū)域內存在點P(x0,y0)滿足x0-2y0>3,則實數(shù)m的取值范圍是( 。
A.(-1,0)B.(0,1)C.(-1,+∞)D.(-∞,-1)

查看答案和解析>>

同步練習冊答案