(本小題滿分12分)
已知橢圓的離心率為,點(diǎn)是橢圓上的一點(diǎn),且點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為4,
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作直線與橢圓交于兩點(diǎn),是坐標(biāo)原點(diǎn),設(shè),是否存在這樣的直線,使四邊形的對(duì)角線長(zhǎng)相等?若存在,求出的方程,若不存在,說(shuō)明理由。

(1)
(2)不存在,證明略。

(1)…………….4分
(2),所以四邊形為平行四邊形
假設(shè)存在直線,使
所以四邊形為矩形,
設(shè)直線的斜率不存在,則直線的方程為
所以
若直線的斜率存在,設(shè)直線的方程為


所以不存在
綜上,滿足條件的直線不存在!12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知的頂點(diǎn)在橢圓上,在直線上,且
(Ⅰ)當(dāng)邊通過(guò)坐標(biāo)原點(diǎn)時(shí),求的長(zhǎng)及的面積;
(Ⅱ)當(dāng),且斜邊的長(zhǎng)最大時(shí),求所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知三點(diǎn)
(1).求以為焦點(diǎn)且過(guò)點(diǎn)P的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)P, 關(guān)于直線的對(duì)稱(chēng)點(diǎn)分別為,求以為焦點(diǎn)且過(guò)點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是橢圓上的點(diǎn), 、是橢圓的兩個(gè)焦點(diǎn),則的值為(   )
A. 10B. 8C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題中假命題是                                                (   )
A.+=1的焦點(diǎn)坐標(biāo)為(0,4)和(0,—4).
B.過(guò)點(diǎn)(1,1)且與直線x-2y+=0垂直的直線方程是2x + y-3=0.
C.離心率為的雙曲線的兩漸近線互相垂直.
D.在平面內(nèi),到定點(diǎn)的距離與到定直線距離相等的點(diǎn)的軌跡是拋物線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)斜率為1的直線與橢圓相交于不同的兩點(diǎn)A、B,則使為整數(shù)的直線共有(  ) A.4條  B.5條   C.6條   D.7條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,則m的值為_(kāi)_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)分別為具有公共焦點(diǎn)的橢圓和雙曲線的離心率,P為兩曲線的一個(gè)公共點(diǎn),且滿足的值為                                          
A.2B.C.4D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

是橢圓的兩個(gè)焦點(diǎn),過(guò)作直線與橢圓交于A,B兩點(diǎn),的周長(zhǎng)為              

查看答案和解析>>

同步練習(xí)冊(cè)答案