已知各項均為正數(shù)的數(shù)列滿足.  (1)若,時,求的通項公式; (2)若,A=1,證明:

(Ⅰ)    (Ⅱ)  見解析


解析:

:(1)由已知,,則.  3分

    即,∴()是首項為,公比為2的等比數(shù)列。

    ∴,∴ 6分

   (2)由已知≥1,由,相加得,又.

    得      10分

    ∵,∴,∴,

    ∴12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項公式;
(Ⅱ)設數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項公式;
(Ⅱ)設數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較數(shù)學公式數(shù)學公式的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:青島二模 題型:解答題

已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項公式;
(Ⅱ)設數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測試卷(陳經(jīng)綸中學)(解析版) 題型:解答題

已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項公式;
(Ⅱ)設數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年高考復習方案配套課標版月考數(shù)學試卷(二)(解析版) 題型:解答題

已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項公式;
(Ⅱ)設數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

同步練習冊答案