精英家教網 > 高中數學 > 題目詳情
19.已知函數f(x)的定義域是R,f(0)=2,若對任意{x∈R,f(x)+f′(x)<1},則不等式exf(x)<ex+1的解集為(0,+∞).

分析 令g(x)=exf(x)-ex-1,利用導數可判斷函數g(x)的單調性,由已知條件可得函數g(x)的零點,由此可解得不等式.

解答 解:令g(x)=exf(x)-ex-1,則g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f(x)+f′(x)>1,
∴f(x)+f′(x)-1>0,
∴g′(x)>0,即g(x)在R上單調遞增,
又f(0)=2,∴g(0)=e0f(0)-e0-1=2-1-1=0,
故當x>0時,g(x)>g(0),即exf(x)-ex-1>0,整理得exf(x)>ex+1,
∴exf(x)>ex+1的解集為(0,+∞).
故答案為:(0,+∞)

點評 本題考查函數單調性的性質及其應用,考查抽象不等式的求解,考查導數與函數單調性的關系,綜合性較強,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

9.若兩直線l1:x+2y-1=0,l2:mx-y+2m=0互相平行,則常數m等于(  )
A.-$\frac{1}{2}$B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.二手車經銷商小王對其所經營的某一型號二手汽車的使用年數x(0<x≤10)與銷售價格y(單位:萬元/輛)進行整理,得到如表的對應數據:
使用年數246810
售價16139.574.5
(1)試求y關于x的回歸直線方程;(參考公式:$\hat b$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a$=y-$\hat b\overline x$)
(2)已知每輛該型號汽車的收購價格為w=0.01x3-0.09x2-1.45x+17.2萬元,根據(1)中所求的回歸方程,預測x為何值時,小王銷售一輛該型號汽車所獲得的利潤L(x)最大?(利潤=售價-收購價)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.已知數列{bn}是等比數列,b9是1和3的等差數列中項,則b2b16=4.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.如圖,測量河對岸的旗桿AB高時,選與旗桿底B在同一水平面內的兩個測點C與D.測得∠BCD=75°,∠BDC=60°,CD=a,并在點C測得旗桿頂A的仰角為60°,則旗桿高AB為( 。
A.$\frac{{\sqrt{2}}}{2}a$B.$\frac{{3\sqrt{2}}}{2}a$C.$\frac{{\sqrt{3}}}{2}a$D.$\frac{{\sqrt{6}}}{2}a$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.已知樣本8,9,10,x,y的平均數為9,方差為2,則x2+y2=170.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.從1,2,3,4,9,18六個數中任取兩個不同的數分別作為一個對數的底數和真數,得到不同的對數值有( 。
A.21B.20C.19D.17

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1
(Ⅰ)求證:AD⊥平面BFED;
(Ⅱ)點P是線段EF上運動,設平面PAB與平面ADE成銳角二面角為θ,試求θ的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.若實數x、y、m滿足|x-m|>|y-m|,則稱x比y遠離m.
(1)若x2-1比1遠離0,求x的取值范圍;
(2)對任意兩個不相等的正數a、b,證明:a3+b3比a2b+ab2遠離2ab$\sqrt{ab}$.

查看答案和解析>>

同步練習冊答案