log2
7
48
+log212-
1
2
log242-2 log23=
 
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)的運算法,化簡真數(shù),利用特殊值的對數(shù)值求出答案.
解答: 解:log2
7
48
+log212-
1
2
log242-2 log23=log2(
7
48
×12÷
42
)
-3=-
1
2
-3
=-
7
2

故答案為:-
7
2
點評:本題考查對數(shù)的運算法則并利用法則求值和化簡,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),D(1,0),過橢圓C的焦點F(
2
,0)且垂直于1x軸的直線與橢圓交于A,B兩點,
OA
OB
=
5
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點D的直線與橢圓C交于M,N兩點,若
MD
=2
DN
,求直線MN的方程;
(Ⅲ)設(shè)直線y=kx+2交橢圓于P,Q兩點,若
DP
DQ
=0,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意正整數(shù)是n,求s=1×
1
2
×
1
3
×…×
1
n
的值,請完善下列程序,并畫出相對應(yīng)的程序框圖

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,且經(jīng)過點(1,
2
2
).
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A,B為橢圓上兩點,直線AB與坐標(biāo)軸不垂直.設(shè)T(x0,0),若|AT|=|BT|,且|AB|=2,求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四女生與兩男生排成一隊,女生甲與兩男生至少一個相鄰的排法種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=sin(ωx+φ)(ω>0,|φ|<
π
2
)的部分圖象如圖所示,則ω=
 
,φ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將6本不同的書分給甲、乙、丙三人,1人得1本,1人得2本,1人得3本,有
 
種分法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,
2
x
+
1
y
=2,則x+2y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F,若以F為圓心,a為半徑的圓與直線x=
a2
c
有交點,則此橢圓的離心率的范圍是
 

查看答案和解析>>

同步練習(xí)冊答案