【解析】A.設(shè)

,所以是偶函數(shù),所以選A.

(幾何證明選講選做題)如圖4,過圓外一點分別作圓的切線和割線交圓于,,=7,是圓上一點使得=5,∠=∠, 則=       。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

有編號為,,…的10個零件,測量其直徑(單位:cm),得到下面數(shù)據(jù):


其中直徑在區(qū)間[1.48,1.52]內(nèi)的零件為一等品。

(Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;

(Ⅱ)從一等品零件中,隨機抽取2個.

     (ⅰ)用零件的編號列出所有可能的抽取結(jié)果;

     (ⅱ)求這2個零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識,考查數(shù)據(jù)處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分

【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個.設(shè)“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.

      (Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結(jié)果有:,,,

,,,共有15種.

      (ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結(jié)果有:,,共有6種.

      所以P(B)=.

(本小題滿分12分)

如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求異面直線CE與AF所成角的余弦值;      

(Ⅱ)證明CD⊥平面ABF;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬預(yù)測理科數(shù)學(xué)試卷(解析版) 題型:解答題

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時,求證:;

(Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時,底面ABCD為正方形,

又因為,………………2分

,得證。

第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時,存在點Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時,底面ABCD為正方形,

又因為,………………3分

(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時,存在點Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬預(yù)測文科數(shù)學(xué)試卷(解析版) 題型:解答題

為了了解某市工人開展體育活動的情況,擬采用分層抽樣的方法從A,B,C三個區(qū)中抽取7個工廠進(jìn)行調(diào)查,已知A,B,C區(qū)中分別有18,27,18個工廠

(Ⅰ)從A,B,C區(qū)中分別抽取的工廠個數(shù);

(Ⅱ)若從抽取的7個工廠中隨機抽取2個進(jìn)行調(diào)查結(jié)果的對比,計算這2個工廠中至少有1個來自A區(qū)的概率.

【解析】本試題主要考查了統(tǒng)計和概率的綜合運用。

第一問工廠總數(shù)為18+27+18=63,樣本容量與總體中的個體數(shù)比為7/63=1/9…3分

所以從A,B,C三個區(qū)中應(yīng)分別抽取的工廠個數(shù)為2,3,2。

第二問設(shè)A1,A2為在A區(qū)中的抽得的2個工廠,B1,B2­,B3為在B區(qū)中抽得的3個工廠,

C1,C2為在C區(qū)中抽得的2個工廠。

這7個工廠中隨機的抽取2個,全部的可能結(jié)果有1/2*7*6=32種。

隨機的抽取的2個工廠至少有一個來自A區(qū)的結(jié)果有A1,A2),A1,B2),A1,B1),

A1,B3)A1,C2),A1,C1), …………9分

同理A2還能給合5種,一共有11種。  

所以所求的概率為p=11/21

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市崇明縣高三高考模擬考試二模理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知四棱錐的底面ABCD為正方形,平面ABCD,E、F分別是BC,PC的中點,,

(1)求證:平面

(2)求二面角的大小.

【解析】第一問利用線面垂直的判定定理和建立空間直角坐標(biāo)系得到法向量來表示二面角的。

第二問中,以A為原點,如圖所示建立直角坐標(biāo)系

,,

設(shè)平面FAE法向量為,則

,

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山東省濟寧市高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過作圓柱的截面交下底面于.

(1)求證:

(2)若四邊形ABCD是正方形,求證;

(3)在(2)的條件下,求二面角A-BC-E的平面角的一個三角函數(shù)值。

【解析】第一問中,利用由圓柱的性質(zhì)知:AD平行平面BCFE

又過作圓柱的截面交下底面于. 

又AE、DF是圓柱的兩條母線

∥DF,且AE=DF    。粒摹危牛

第二問中,由線面垂直得到線線垂直。四邊形ABCD是正方形  又

BC、AE是平面ABE內(nèi)兩條相交直線

 

第三問中,設(shè)正方形ABCD的邊長為x,則在

 

由(2)可知:為二面角A-BC-E的平面角,所以

證明:(1)由圓柱的性質(zhì)知:AD平行平面BCFE

又過作圓柱的截面交下底面于. 

又AE、DF是圓柱的兩條母線

∥DF,且AE=DF    。粒摹危牛 

(2) 四邊形ABCD是正方形  又

BC、AE是平面ABE內(nèi)兩條相交直線

 

(3)設(shè)正方形ABCD的邊長為x,則在

 

由(2)可知:為二面角A-BC-E的平面角,所以

 

查看答案和解析>>

同步練習(xí)冊答案