【題目】如圖,在三棱臺(tái)中, , 平面, , , , 分別為的中點(diǎn).
(1)求證: 平面;
(2)求平面與平面所成角(銳角)的大小.
【答案】(1)見(jiàn)解析(2).
【解析】試題分析:(1)根據(jù)AB=2DE可得到BC=2EF,從而可以得出四邊形EFHB為平行四邊形,從而得到BE∥HF,便有BE∥平面FGH,再證明DE∥平面FGH,從而得到平面BDE∥平面FGH,從而BD∥平面FGH;
(2)連接HE,根據(jù)條件能夠說(shuō)明HC,HG,HE三直線兩兩垂直,從而分別以這三直線為x,y,z軸,建立空間直角坐標(biāo)系,利用兩平面的法向量求解二面角的大小.
試題解析:
由平面,可得平面,
又, ,則,于是兩兩垂直,
以點(diǎn)為坐標(biāo)原點(diǎn), 所在的直線分別為軸建立空間直角坐標(biāo)系,
設(shè),則, , ,
, , , ,
(1)證明:連接,設(shè)與交于點(diǎn).在三棱臺(tái)中, ,則,
而是的中點(diǎn), ,則,所以四邊形是平行四邊形,
是的中點(diǎn), .
又在中, 是的中點(diǎn),則,
又平面, 平面,
故平面
(2)平面的一個(gè)法向量為,
設(shè)平面的法向量為,則,即,
取,則, , ,
,故平面與平面所成角(銳角)的大小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和,S3 , S9 , S6成等差數(shù)列,且a2+a5=2am , 則m= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知條件p:A={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R},條件q:B={x|x2﹣2x﹣3≤0,x∈R}.
(1)若A∩B={x|0≤x≤3},求實(shí)數(shù)m的值;
(2)若q是¬p的充分條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1:(a-1)x+y+b=0,l2:ax+by-4=0,求滿足下列條件的a,b的值.
(1)l1⊥l2,且l1過(guò)點(diǎn)(1,1);
(2)l1∥l2,且l2在第一象限內(nèi)與兩坐標(biāo)軸圍成的三角形的面積為2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的左、右焦點(diǎn)分別為,離心率, 為橢圓上的任意一點(diǎn)(不含長(zhǎng)軸端點(diǎn)),且面積的最大值為1.
(1)求橢圓的方程;
(2)已知直線與橢圓交于不同的兩點(diǎn),且線段的中點(diǎn)不在圓內(nèi),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),.
(1)直接寫(xiě)出函數(shù)的增區(qū)間(不需要證明);
(2)求出函數(shù),的解析式;
(3)若函數(shù),,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市電視臺(tái)為了宣傳舉辦問(wèn)答活動(dòng),隨機(jī)對(duì)該市15~65歲的人群抽樣了人,回答問(wèn)題計(jì)結(jié)果如下圖表所示:
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組各抽取多少人?
(3)在(2)的前提下,電視臺(tái)決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的前項(xiàng)和為,等比數(shù)列的前項(xiàng)和為,且,,.
(1)若,求的通項(xiàng)公式;
(2)若,求.
【答案】(1);(2)21或.
【解析】試題分析:(1)設(shè)等差數(shù)列公差為,等比數(shù)列公比為,由已知條件求出,再寫(xiě)出通項(xiàng)公式;(2)由,求出的值,再求出的值,求出。
試題解析:設(shè)等差數(shù)列公差為,等比數(shù)列公比為有,即.
(1)∵,結(jié)合得,
∴.
(2)∵,解得或3,
當(dāng)時(shí),,此時(shí);
當(dāng)時(shí),,此時(shí).
【題型】解答題
【結(jié)束】
20
【題目】如圖,已知直線與拋物線相交于兩點(diǎn),且, 交于,且點(diǎn)的坐標(biāo)為.
(1)求的值;
(2)若為拋物線的焦點(diǎn), 為拋物線上任一點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的不等式xex﹣2ax+a<0的非空解集中無(wú)整數(shù)解,則實(shí)數(shù)a的取值范圍是( )
A.[ , )
B.[ , )
C.[ ,e]
D.[ ,e]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com