【題目】已知橢圓: 的左、右焦點分別為,離心率, 為橢圓上的任意一點(不含長軸端點),且面積的最大值為1.
(1)求橢圓的方程;
(2)已知直線與橢圓交于不同的兩點,且線段的中點不在圓內(nèi),求的取值范圍.
【答案】(1) (2)
【解析】試題分析:
(1)要求橢圓方程,一般要找到兩個關(guān)于的方程,題中離心率是一個,即, 面積最大時P點是橢圓短軸端點,因此有,這樣可解出得橢圓方程;
(2)把直線方程與橢圓方程聯(lián)立方程組,消元后為一元二次方程,設(shè)交點,利用韋達定理可得中點坐標(用表示),注意直線與橢圓相交有限制條件,由中點在圓內(nèi)又得一條件,從而可解得的范圍.
試題解析:
(Ⅰ)由題可知,又a2=b2+c2,
∴,故------3分
所以橢圓的標準方程為
(II)聯(lián)立方程消去y 整理得:
則,解得…..8分
設(shè),則,
即AB的中點為
又AB的中點不在園內(nèi),所以,解得
綜上可知,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C為銳角△ABC的三個內(nèi)角,向量 =(2﹣2sinA,cosA+sinA), =(1+sinA,cosA﹣sinA),且 ⊥ .
(1)求A的大;
(2)求y=2sin2B+cos( ﹣2B)取最大值時角B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的公差為d,前n項和為Sn , 等比數(shù)列{bn}的公比為q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求數(shù)列{an},{bn}的通項公式
(2)當d>1時,記cn= ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知λ∈R,函數(shù) g(x)=x2﹣4x+1+4λ,若關(guān)于x的方程f(g(x))=λ有6個解,則λ的取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的右焦點為F(1,0),且點(﹣1, )在橢圓C上.
(1)求橢圓C的標準方程;
(2)已知動直線l過點F,且與橢圓C交于A,B兩點,試問x軸上是否存在定點Q,使得 恒成立?若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列 中,公差 , ,且 成等比數(shù)列.
(1)求數(shù)列 的通項公式;
(2)若 為數(shù)列 的前 項和,且存在 ,使得 成立,求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)為上的奇函數(shù),求實數(shù)a的值;
(2)當時,函數(shù)在為減函數(shù),求實數(shù)a的取值范圍;
(3)是否存在實數(shù)(),使得 在閉區(qū)間上的最大值為2,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com