【題目】斐波那契數列滿足: .若將數列的每一項按照下圖方法放進格子里,每一小格子的邊長為1,記前項所占的格子的面積之和為,每段螺旋線與其所在的正方形所圍成的扇形面積為,則下列結論錯誤的是( )
A. B.
C. D.
科目:高中數學 來源: 題型:
【題目】某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數的關聯(lián)如下:
上年度出險次數 | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
隨機調查了該險種的200名續(xù)保人在一年內的出險情況,得到如下統(tǒng)計表:
出險次數 | 0 | 1 | 2 | 3 | 4 | ≥5 |
頻數 | 60 | 50 | 30 | 30 | 20 | 10 |
(1)記A為事件:“一續(xù)保人本年度的保費不高于基本保費”,求P(A)的估計值;
(2)記B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的160%”,求P(B)的估計值;
(3)求續(xù)保人本年度平均保費的估計值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設直線與拋物線交于,兩點,與橢圓交于,兩點,直線,,,(為坐標原點)的斜率分別為,,,,若.
(1)是否存在實數,滿足,并說明理由;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.”請問各畜賠多少?它的大意是放牧人放牧時粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1斗=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應該分別向青苗主人賠償多少升糧食?( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:過點,且它的焦距是短軸長的倍.
(1)求橢圓的方程.
(2)若,是橢圓上的兩個動點(,兩點不關于軸對稱),為坐標原點,,的斜率分別為,,問是否存在非零常數,使當時,的面積為定值?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中:①若“”是“”的充要條件;
②若“,”,則實數的取值范圍是;
③已知平面、、,直線、,若,,,,則;
④函數的所有零點存在區(qū)間是.
其中正確的個數是( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,已知正方形鐵片邊長為2a米,四邊中點分別為E,F,G,H,沿著虛線剪去大正方形的四個角,剩余為四個全等的等腰三角形和一個正方形ABCD(兩個正方形中心重合且四邊相互平行),沿正方形ABCD的四邊折起,使E,F,G,H四點重合,記為P點,如圖2,恰好能做成一個正四棱錐(粘貼損耗不計),PO⊥底面ABCD,O為正四棱錐底面中心,設正方形ABCD的邊長為2x米.
(1)若正四棱錐的棱長都相等,求所圍成的正四棱錐的全面積S;
(2)請寫出正四棱錐的體積V關于x的函數,并求V的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com