【題目】已知函數(shù)f(x)=x3+ax2﹣9x+1(a∈R),當x≠1時,曲線y=f(x)在點(x0,f(x0)和點(2﹣x0,f(2﹣x0))處的切線總是平行,現(xiàn)過點(﹣2a,a﹣2)作曲線y=f(x)的切線,則可作切線的條數(shù)為( )
A..3B..2C.1D..0
【答案】A
【解析】
求得的導數(shù),可得切線的斜率,由兩直線平行的條件可得,求得a=-3,設(shè)過點作曲線的切線的切點為,求得切線方程,代入可得m的三次方程,構(gòu)造函數(shù),求得導數(shù)和單調(diào)性,可得極值,判斷極值符號,即可得到方程的解的個數(shù),可得所求切線的條數(shù).
函數(shù)的導數(shù)為,
當x0≠1時,曲線在點與點處的切線總是平行,
可得,
化簡可得,解得,
依題意,設(shè)過點作曲線的切線的切點為,
可得切線的斜率為,
即有切線的方程為,
代入,可得,
化為,
設(shè),
則,
由1<m<6,可得遞減;
由m>6或m<1,可得遞增,
可得的極小值為,極大值為,
可得有3個實根,
則由點可作曲線的切線的條數(shù)為3.
故選:A.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|﹣t,t∈R,g(x)=|x+3|.
(1)x∈R,有f(x)≥g(x),求實數(shù)t的取值范圍;
(2)若不等式f(x)≤0的解集為[1,3],正數(shù)a、b滿足ab﹣2a﹣b=2t﹣2,求a+2b的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和滿足.
(1)證明數(shù)列為等差數(shù)列,并求出數(shù)列的通項公式.
(2)若不等式,對任意恒成立,求的取值范圍.
(3)記數(shù)列的前項和為,是否存在正整數(shù),使得成立,若存在,求出所有符合條件的有序?qū)崝?shù)對(,);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線:(參數(shù)),以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為,點的極坐標為.
(1)將曲線的極坐標方程化為直角坐標方程,并求出點的直角坐標;
(2)設(shè)為曲線上的點,求中點到曲線上的點的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于集合,定義函數(shù)對于兩個集合,定義集合. 已知, .
(Ⅰ)寫出和的值,并用列舉法寫出集合;
(Ⅱ)用表示有限集合所含元素的個數(shù),求的最小值;
(Ⅲ)有多少個集合對,滿足,且?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】武漢某科技公司為提高市場銷售業(yè)績,現(xiàn)對某產(chǎn)品在部分營銷網(wǎng)點進行試點促銷活動.現(xiàn)有兩種活動方案,在每個試點網(wǎng)點僅采用一種活動方案,經(jīng)統(tǒng)計,2018年1月至6月期間,每件產(chǎn)品的生產(chǎn)成本為10元,方案1中每件產(chǎn)品的促銷運作成本為5元,方案2中每件產(chǎn)品的促銷運作成本為2元,其月利潤的變化情況如圖①折線圖所示.
(1)請根據(jù)圖①,從兩種活動方案中,為該公司選擇一種較為有利的活動方案(不必說明理由);
(2)為制定本年度該產(chǎn)品的銷售價格,現(xiàn)統(tǒng)計了8組售價xi(單位:元/件)和相應銷量y(單位:件)(i=1,2,…8)并制作散點圖(如圖②),觀察散點圖可知,可用線性回歸模型擬合y與x的關(guān)系,試求y關(guān)于x的回歸方程(系數(shù)精確到整數(shù));
參考公式及數(shù)據(jù):40,660,xiyi=206630,x12968,,,
(3)公司策劃部選1200lnx+5000和═x3+1200兩個模型對銷量與售價的關(guān)系進行擬合,現(xiàn)得到以下統(tǒng)計值(如表格所示):
x3+1200 | ||
52446.95 | 122.89 | |
124650 | ||
相關(guān)指數(shù) | R | R |
相關(guān)指數(shù):R2=1.
(i)試比較R12,R22的大小(給出結(jié)果即可),并由此判斷哪個模型的擬合效果更好;
(ii)根據(jù)(1)中所選的方案和(i)中所選的回歸模型,求該產(chǎn)品的售價x定為多少時,總利潤z可以達到最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知是正三角形,EA,CD都垂直于平面ABC,且,二面角的平面角大小為,F是BE的中點,求證:
(1)平面ABC;
(2)平面EDB;
(3)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的右頂點為A,以A為圓心,b為半徑做圓,圓A與雙曲線C的一條漸近線相交于M,N兩點,若(為坐標原點),則雙曲線C的離心率為___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com