9.曲線C的方程為$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$,其中m,n是將一枚骰子先后投擲兩次所得的點(diǎn)數(shù),記事件A為“方程$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$表示焦點(diǎn)在x軸上的橢圓”,那么事件A發(fā)生的概率P(A)=$\frac{5}{12}$.

分析 易得總的基本事件共36個(gè),表示橢圓的共15個(gè),由概率公式可得.

解答 解:m,n是將一枚骰子先后投擲兩次所得點(diǎn)數(shù)共6×6=36,
∵事件A表示焦點(diǎn)在x軸上的橢圓”
∴m>n,列舉可得事件A包含(2,1),(3,1),(3,2),
(4,1),(4,2),(4,3),(5,1),(5,2),
(5,3),(5,4),(6,1),(6,2),(6,3),
(6,4),(6,5)共15個(gè)
∴P(A)=$\frac{15}{36}$=$\frac{5}{12}$,
故答案為:$\frac{5}{12}$

點(diǎn)評(píng) 本題考查古典概型及其概率公式,涉及橢圓的方程,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列命題錯(cuò)誤的是( 。
A.兩個(gè)向量的和仍是一個(gè)向量
B.當(dāng)向量$\overrightarrow{a}$與向量$\overrightarrow$不共線時(shí),$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$,$\overrightarrow$都不同向,且|$\overrightarrow{a}$+$\overrightarrow$|<|$\overrightarrow{a}$|+|$\overrightarrow$|
C.當(dāng)非零向量$\overrightarrow{a}$,$\overrightarrow$同向時(shí),$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$,$\overrightarrow$都同向,且|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|
D.當(dāng)非零向量$\overrightarrow{a}$,$\overrightarrow$反向時(shí),$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$或$\overrightarrow$反向,且|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度,建立極坐標(biāo)系.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}+2cosα}\\{y=3+2sinα}\end{array}\right.$(α∈[0,2π],α為參數(shù)),曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{3}$)=a(a∈R).若曲線C1與曲線C2有且僅有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平面直角坐標(biāo)系中,已知圓A過直線y=x和圓x2+y2=4的交點(diǎn),且被交點(diǎn)所在的弦在圓A中所對(duì)的圓心角為$\frac{π}{3}$,則圓A的標(biāo)準(zhǔn)方程為(x-$\sqrt{6}$)2+(y+$\sqrt{6}$)2=16或(x+$\sqrt{6}$)2+(y-$\sqrt{6}$)2=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在數(shù)列{an}中,首項(xiàng)不為零,且an=$\sqrt{3}$an-1(n∈N*,n≥2),Sn為{an}的前n項(xiàng)和,令Tn=$\frac{10{S}_{n}-{S}_{2n}}{{a}_{n+1}}$,n∈N*,則Tn的最大值為2+2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖的程序框圖,若輸入x=12,則輸出y=( 。
A.$\frac{10}{3}$B.$\frac{5}{3}$C.$\frac{3}{10}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系中.以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系已知曲線C:pcos2θ=2asinθ(a>0)過點(diǎn)P(-4,-2)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t}\\{y=-2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))直線l與曲線C分別交于點(diǎn)M,N.
(1)寫出C的直角坐標(biāo)方程和l的普通方程;
(2)若丨PM丨,丨MN丨,丨PN丨成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知直線l:x-y+4=0與圓C:$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=1+2sinθ}\end{array}\right.$,則C上各點(diǎn)到l的距離的最小值為( 。
A.2$\sqrt{2}$-2B.2$\sqrt{2}$C.2$\sqrt{3}$D.2$\sqrt{2}$+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,若輸入n,x的值分別為3,2.則輸出v的值為(  )
A.9B.18C.20D.35

查看答案和解析>>

同步練習(xí)冊答案